Advertisement

Adsorption

pp 1–9 | Cite as

Theoretical study of SF6 decomposition on the MoS2 monolayer doped with Ag, Ni, Au, Pt: a first-principles study

  • Zhaolun Cui
  • Xiaoxing ZhangEmail author
  • Yi Li
  • Dachang Chen
  • Yalong Li
  • Hanyan Xiao
Article

Abstract

SF6 as a greenhouse gas, how to efficiently decompose it becomes a hotpot in the environmental field. Based on the first-principles calculations, this paper studied the interaction mechanism of SF6 gas molecules on transition metal (TM) doped MoS2 surface. The adsorption energy, energy barrier, charge transfer, density of states and electron density difference have been discussed. The results show that TM doping can enhance the interaction of MoS2 surface with SF6 molecules compared to undoped MoS2. Among the four (Au, Pt, Ag, Ni) doping conditions, the adsorption energies of SF6 molecules in the Au–MoS2 and Pt–MoS2 systems were 0.306 eV and 0.249 eV, the charge transfer process was weak, and the SF6 molecule did not change significantly. In the Ag–MoS2 and Ni–MoS2 systems, the adsorption energies reached 0.464 eV and 0.473 eV, and the DOS and differential charge analysis show that there were strong charge transfer process and electron orbital interaction between SF6 and MoS2. The decomposition energy barriers of SF6 on Ag–MoS2 and Ni–MoS2 surface were 0.696 eV and 0.432 eV, respectively. The S–F bonds were obviously elongated. The results show that Ag–MoS2 and Ni–MoS2 have catalytic potentials for the decomposition of SF6.

Keywords

SF6 MoS2 Transition metal Adsorption First-principles calculation 

Notes

Acknowledgements

This study is funded by National Natural Science Foundation of China (NSFC, Funding Number is 51777144) and State Grid Corporation Science and Technology Project (Funding Number is SGHB0000KXJS1800554).

References

  1. Benck, J.D., Hellstern, T.R., Kibsgaard, J., Chakthranont, P., Jaramillo, T.F.: Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4, 3957–3971 (2014)CrossRefGoogle Scholar
  2. Chhowalla, M., Shin, H.S., Eda, G., Li, L.J., Loh, K.P., Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)CrossRefGoogle Scholar
  3. Delley, B.: An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92(1), 508–517 (1990)CrossRefGoogle Scholar
  4. Delley, B.: Hardness conserving semilocal pseudopotentials. Phys. Rev. B 66(15), 155125 (2002)CrossRefGoogle Scholar
  5. Huang, L., Gu, D., Yang, L., et al.: Photoreductive degradation of sulfur hexafluoride in the presence of styrene. J. of Environ. Sci. 20(2), 183–188 (2008)CrossRefGoogle Scholar
  6. Joensen, P., Crozier, E.D., Alberding, N., et al.: A study of single-layer and restacked MoS2 by X-ray diffraction and X-ray absorption spectroscopy. J. Phys. C Solid State Phys. 20(26), 4043 (1987)CrossRefGoogle Scholar
  7. Kashiwagi, D., Takai, A., Takubo, T., et al.: Metal phosphate catalysts effective for degradation of sulfur hexafluoride. Ind. Eng. Chem. Res 48(2), 632–640 (2009a)CrossRefGoogle Scholar
  8. Kashiwagi, D., Takai, A., Takubo, T., et al.: Catalytic activity of rare earth phosphates for SF6 decomposition and promotion effects of rare earths added into AlPO4. J Coll. Interface Sci. 332(1), 136 (2009b)CrossRefGoogle Scholar
  9. Kim, G., Jang, A.R., Jeong, H.Y., Lee, Z., Kang, D.J., Shin, H.S.: Growth ofhigh-crystalline: single-layer hexagonal boron nitride on recyclable platinumfoil. Nano Lett. 13, 1834–1839 (2013)CrossRefGoogle Scholar
  10. Kim, J.H., Cho, C.H., Shin, D.H., et al.: Abatement of fluorinated compounds using a 2.45 GHz microwave plasma torch with a reverse vortex plasma reactor. J. Hazard. Mater. 294, 41 (2015)CrossRefGoogle Scholar
  11. Le, D., Rawal, T.B., Rahman, T.S.: Single-layer MoS2 with sulfur vacancies: structure and catalytic application. J. Phys. Chem. C 118(10), 5346–5351 (2014)CrossRefGoogle Scholar
  12. Lee, H.M., Chang, M.B., Wu, K.Y.: Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas. J. Air Waste Manag. Assoc. 54(8), 960–970 (2004)CrossRefGoogle Scholar
  13. Liu, S., Huang, S.: Atomically dispersed Co atoms on MoS2 monolayer: a promising high-activity catalyst for CO oxidation. Appl. Surf. Sci. 425, 478–483 (2017)CrossRefGoogle Scholar
  14. Ma, D., Ju, W., Li, T., et al.: Modulating electronic, magnetic and chemical properties of MoS2, monolayer sheets by substitutional doping with transition metals. Appl. Surf. Sci. 364, 181–189 (2016a)CrossRefGoogle Scholar
  15. Ma, D., Ju, W., Li, T., et al.: Formaldehyde molecule adsorption on the doped monolayer MoS 2: a first-principles study. Appl. Surf. Sci. 371, 180–188 (2016b)CrossRefGoogle Scholar
  16. Ma, D., Ju, W., Li, T., et al.: The adsorption of CO and NO on the MoS2, monolayer doped with Au, Pt, Pd, or Ni: A first-principles study. Appl. Surf. Sci. 383, 98–105 (2016c)CrossRefGoogle Scholar
  17. Ma, J., Wang, C., He, H.: Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition. Appl. Catal. B Environ. 201, 503–510 (2017)CrossRefGoogle Scholar
  18. Mulliken, R.S.: Electronic population analysis on LCAO–MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J. Chem. Phys. 23(10), 1841–1846 (1955)CrossRefGoogle Scholar
  19. Patel, N., Fernandes, R., Miotello, A.: Promoting effect of transition metal-doped Co–B alloy catalysts for hydrogen production by hydrolysis of alkaline NaBH4, solution. J. Catal. 271(2), 315–324 (2010)CrossRefGoogle Scholar
  20. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)CrossRefGoogle Scholar
  21. Rabie, M., Franck, C.M.: An assessment of eco-friendly gases for electrical insulation to replace the most potent industrial greenhouse gas SF6. Environ. Sci. Technol. 52, 369–380 (2017)CrossRefGoogle Scholar
  22. Rahmat Ullah, A., Rashid, A., Rashid, F., Khan, Ali, A., Dielectric characteristic of dichlorodifluoromethane (R12) gas and mixture with N2/air as an alternative to SF6 gas. High Volt. 2(3), 205–210 (2017)CrossRefGoogle Scholar
  23. Reilly, J., Prinn, R., Harnisch, J., et al.: Multi-gas assessment of the Kyoto protocol. Nature 401(6753), 549–555 (1999)CrossRefGoogle Scholar
  24. Song, X., Liu, X., Ye, Z., et al.: Photodegradation of SF6 on polyisoprene surface: Implication on elimination of toxic byproducts. J. Hazard. Mater. 168(1), 493–500 (2009)CrossRefGoogle Scholar
  25. Sun, M., Yu, L., Ye, F., et al.: Transition metal doped cryptomelane-type manganese oxide for low-temperature catalytic combustion of dimethyl ether. Chem. Eng. J. 220(6), 320–327 (2013)CrossRefGoogle Scholar
  26. Tkatchenko, R.A., Distasio, M., HEad-Gordon, M., Scheffler: Dispersion corrected Møller–Plesset second-order perturbation theory. J. Chem. Phys. 131(12), 094106 (2009)CrossRefGoogle Scholar
  27. Tsai, C.H., Shao, J.M.: Formation of fluorine for abating sulfur hexafluoride in an atmospheric-pressure plasma environment. J. Hazard. Mater. 157(1), 201–206 (2008)CrossRefGoogle Scholar
  28. Van Brunt, R.J., Herron, J.T.: Fundamental processes of SF6 decomposition and oxidation in glow and corona discharge. IEEE Trans. Electr. Insul. 25, 75–93 (1990)CrossRefGoogle Scholar
  29. Vogt, P., De, P.P., Quaresima, C., et al.: Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108(15), 155501 (2012)CrossRefGoogle Scholar
  30. Wu, S., Zeng, Z., He, Q., Wang, Z., Wang, S.J., Du, Y., Yin, Z., Sun, X., Chen, W.: H.Zhang, Electrochemically reduced single-layer MoS2 nanosheets: characterization, properties, and sensing applications. Small 8, 2264–2270 (2012)CrossRefGoogle Scholar
  31. Wu, P., Yin, N., Li, P., et al.: The adsorption and diffusion behavior of noble metal adatoms (Pd, Pt, Cu, Ag and Au) on a MoS2 monolayer: a first-principles study. Phys. Chem. Chem. Phys. 19(31), 20713–20722 (2017a)CrossRefGoogle Scholar
  32. Wu, L., Xu, X., Zhao, Y., et al.: Mn doped MoS2/reduced graphene oxide hybrid for enhanced hydrogen evolution. Appl. Surf. Sci. 425, 470–477 (2017b)CrossRefGoogle Scholar
  33. Xiao, B.B., Zhang, P., Han, L.P., et al.: Functional MoS2, by the Co/Ni doping as the catalyst for oxygen reduction reaction. Appl. Surf. Sci. 354, 221–228 (2015)CrossRefGoogle Scholar
  34. Xiao, H., Zhang, X., Hu, X., et al.: Experimental and simulation analysis on by-products of treatment of SF6 using dielectric barrier discharge. IEEE Trans. Dielectr. Electr. Insulation 24(3), 1617–1624 (2017)CrossRefGoogle Scholar
  35. Xu, X., Sun, Y., Qiao, W., et al.: 3D MoS2-graphene hybrid aerogels as catalyst for enhanced efficient hydrogen evolution. Appl. Surf. Sci. 396, 1520–1527 (2017)CrossRefGoogle Scholar
  36. Yang, Y., Evans, J., Rodriguez, J.A., et al.: Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu (111), Cu clusters, and Cu/ZnO (0001 [combining macron]). Phys. Chem. Chem. Phys. 12(33), 9909–9917 (2010)CrossRefGoogle Scholar
  37. Yuwen, L., Xu, F., Xue, B., Luo, Z., Zhang, Q., Bao, B., Su, S., Weng, L., Huang, W., Wang, L.: General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd–MoS2 for methanol oxidation. Nanoscale 6, 5762–5769 (2014)CrossRefGoogle Scholar
  38. Zámostná, L., Braun, T.: Catalytic degradation of sulfur hexafluoride by rhodium complexes. Angew. Chem. 54(36), 10652–10656 (2015)CrossRefGoogle Scholar
  39. Zhang, J., Zhou, J.Z., Liu, Q., et al.: Efficient removal of sulfur hexafluoride (SF6) through reacting with recycled electroplating sludge. Environ. Sci. Technol. 47(12), 6493–6499 (2013)CrossRefGoogle Scholar
  40. Zhang, Y., Li, Y., Cui, Z., et al.: Simulation and experiment on the catalytic degradation of high-concentration SF6 on TiO2 surface under UV light. AIP Adv. 8(5), 055215 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electrical EngineeringWuhan UniversityWuhanChina
  2. 2.Electric Power Research InstituteState Grid Jiangsu Electric Power Co., LtdNanjingChina

Personalised recommendations