Advertisement

Adsorption

, Volume 25, Issue 3, pp 521–528 | Cite as

Development of activated graphene-MOF composites for H2 and CH4 adsorption

  • Barbara Szczęśniak
  • Jerzy Choma
  • Mietek JaroniecEmail author
Article

Abstract

The structural and adsorption properties of activated graphene/metal–organic framework (MOF) composites are investigated for four samples synthesized by in-situ crystallization and sonication-assisted methods. Depending on the method used, the composites showed different morphology, structure and consequently adsorption properties toward H2 and CH4. Addition of KOH-activated graphene during synthesis of an aluminum-containing MOF (MOF520) under sonication conditions boosted adsorption capacities of the resulting composite with respect to both adsorbates, while the in-situ crystallization of MOF520 in mesopores of the CO2-activated graphene assured very effective coupling of both components. Such comparative study is valuable for the design and synthesis of MOF-based composites for various applications.

Keywords

Activated graphene Graphene-MOF composites Hydrogen storage Methane storage MOF520 

Notes

Acknowledgements

BS and JC acknowledge the National Science Centre (Poland) for support of this research under Grant UMO-2016/23/B/ST5/00532.

References

  1. Banerjee, P.C., Lobo, D.E., Middag, R., Ng, W.K., Shaibani, M.E., Majumder, M.: Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: more than the sum of its parts. ACS Appl. Mater. Interfaces 7, 3655–3664 (2015)CrossRefGoogle Scholar
  2. Boutin, A., Couck, S., Coudert, F.-X., Serra-Crespo, P., Kapteijn, F., Alain, H., Fuchs, A.H., Denayer, J.F.M.: Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption. Micropor. Mesopor. Mater. 140, 108–113 (2011)CrossRefGoogle Scholar
  3. Chen, B., Ockwig, N.W., Millward, A.R., Contreras, D.S., Yaghi, O.M.: High H2 adsorption in a microporous metal-organic framework with open metal sites. Angew. Chem. 117, 4823–4827 (2005)CrossRefGoogle Scholar
  4. Chen, Y., Lv, D., Wu, J., Xiao, J., Xi, H., Xia, Q., Li, Z.: A new MOF-505@GO composite with high selectivity for CO2/CH4 and CO2/N2 separation. Chem. Eng. J. 308, 1065–1072 (2017)CrossRefGoogle Scholar
  5. Düren, T.: How does the pore morphology influence the adsorption performance of metal–organic frameworks? A molecular simulation study of methane and ethane adsorption in Zn-MOFs. Stud. Surf. Sci. Catal. 170, 2042–2047 (2007)CrossRefGoogle Scholar
  6. Furukawa, H., Cordova, K.E., O’Keeffe, M., Yaghi, O.M.: The chemistry and applications of metal–organic frameworks. Science 341, 123044 (1–12) (2013)Google Scholar
  7. Gándara, F., Furukawa, H., Lee, S., Yaghi, O.M.: High methane storage capacity in aluminum metal–organic frameworks. J. Am. Chem. Soc. 136, 5271–5274 (2014)CrossRefGoogle Scholar
  8. Ge, X., Li, Z., Yin, L.: Metal–organic frameworks derived porous core/shell CoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 32, 117–124 (2017)CrossRefGoogle Scholar
  9. Gwardiak, S., Szczęśniak, B., Choma, J., Jaroniec, M.: Benzene adsorption on synthesized and commercial metal–organic frameworks. J. Porous Mat. (2018)  https://doi.org/10.1007/s10934-018-0678-0 Google Scholar
  10. Hedin, N., Andersson, L., Bergström, L., Yan, J.: Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption (review). Appl. Energy 104, 418–433 (2013)CrossRefGoogle Scholar
  11. Hu, X., Brandani, S., Benin, A.I., Willis, R.R.: Testing the stability of novel adsorbents for carbon capture applications using the zero length column technique. Chem. Eng. Res. Des. 131, 406–413 (2018)CrossRefGoogle Scholar
  12. Huang, L., Liu, B.: Synthesis of a novel and stable reduced graphene oxide/MOF hybrid nanocomposite and photocatalytic performance for the degradation of dyes. RSC Adv. 6, 17873–17879 (2016)CrossRefGoogle Scholar
  13. Jagiello, J., Ania, C.O., Parra, J.B., Cook, C.: Dual gas analysis of microporous carbons Using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2. Carbon 91, 330–337 (2015)CrossRefGoogle Scholar
  14. Ji, D., Zhou, H., Tong, Y., Wang, J., Zhu, M., Chen, T., Yuan, A.: Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries. Chem. Eng. J. 313, 1623–1632 (2017)CrossRefGoogle Scholar
  15. Jin, Y., Zhao, C., Sun, Z., Lin, Y., Chen, L., Wang, D., Shen, C.: Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries. RSC Adv. 6, 30763–30768 (2016)CrossRefGoogle Scholar
  16. Kaur, R., Kim, K.-H., Deep, A.: A convenient electrolytic assembly of graphene-MOF composite thin film and its photoanodic application. Appl. Surf. Sci. 396, 1303–1309 (2017)CrossRefGoogle Scholar
  17. Klechikov, A., Mercier, G., Sharifi, T., Baburin, I.A., Seifert, G., Talyzin, A.V.: Hydrogen storage in high surface area graphene scaffolds. Chem. Commun. 51, 15280–15283 (2015)CrossRefGoogle Scholar
  18. Kumar, R., Jayaramulu, K., Maji, T.K., Rao, C.N.R.: Hybrid nanocomposites of ZIF-8 with graphene oxide exhibiting tunable morphology, significant CO2 uptake and other novel properties. Chem. Commun. 49, 4947–4949 (2013)CrossRefGoogle Scholar
  19. Kumar, R., Jayaramulu, K., Maji, T.K., Rao, C.N.R.: Growth of 2D sheets of a MOF on graphene surfaces to yield composites with novel gas adsorption characteristics. Dalton Trans. 43, 7383–7386 (2014)CrossRefGoogle Scholar
  20. Lee, J.H., Kang, S., Jaworski, J., Kwon, K.-Y., Seo, M.L., Lee, J.Y., Jung, J.H.: Fluorescent composite hydrogels of metal–organic frameworks and functionalized graphene oxide. Chem. Eur. J. 18, 765–769 (2012)CrossRefGoogle Scholar
  21. Liu, S., Sun, L., Xu, F., Zhang, J., Jiao, C., Li, F., Li, Z., Wang, S., Jiang, X., Zhou, H., Yang, L., Schick, C.: Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity. Energy Environ. Sci. 6, 818–823 (2013)CrossRefGoogle Scholar
  22. Menzel, R., Iruretagoyena, D., Wang, Y., Bawaked, S.M., Mokhtar, M., Al-Thabaiti, S.A., Basahel, S.N., Shaffer, M.S.P.: Graphene oxide/mixed metal oxide hybrid materials for enhanced adsorption desulfurization of liquid hydrocarbon fuels. Fuel 181, 531–536 (2016)CrossRefGoogle Scholar
  23. Moradi, S.E.: Enhanced hydrogen adsorption by Fe3O4–graphene oxide materials. Appl. Phys. A 119, 179–184 (2015)CrossRefGoogle Scholar
  24. Musyoka, N.M., Ren, J., Langmi, H.W., Northa, B.C., Mathe, M., Bessarabov, D.: Synthesis of rGO/Zr-MOF composite for hydrogen storage application. J. Alloy. Compd. 724, 450–455 (2017)CrossRefGoogle Scholar
  25. Nishimiya, N., Ishigaki, K., Takikawa, H., Ikeda, M., Hibi, Y., Sakakibara, T., Matsumoto, A., Tsutsumi, K.: Hydrogen sorption by single-walled carbon nanotubes prepared by a torch arc method. J. Alloys Compd. 339, 275–282 (2002)CrossRefGoogle Scholar
  26. Policicchio, A., Zhao, Y., Zhong, Q., Agostino, R.G., Bandosz, T.J.: Cu-BTC/aminated graphite oxide composites as high-efficiency CO2 capture media. ACS Appl. Mater. Inter. 6, 101–108 (2013)CrossRefGoogle Scholar
  27. Qiu, X., Wang, X., Li, Y.: Controlled growth of dense and ordered metal–organic framework nanoparticles on graphene oxide. Chem. Commun. 51, 3874–3877 (2015)CrossRefGoogle Scholar
  28. Rasines, G., Macías, C., Haro, M., Jagiello, J., Ania, C.O.: Effects of CO2 activation of carbon aerogels leading to ultrahigh micro-meso porosity. Microporous Mesoporous Mater 209, 18–22 (2015)CrossRefGoogle Scholar
  29. Siqueira, R.M., Freitas, G.R., Peixoto, H.R., Nascimento, J.F., Musse, A.P.S., Torres, A.E.B., Azevedo, D.C.S., Bastos-Neto, M.: Carbon dioxide capture by pressure swing adsorption. Energy Proc 114, 2182–2192 (2017)CrossRefGoogle Scholar
  30. Szczęśniak, B., Choma, J., Jaroniec, M.: Gas adsorption properties of graphene-based materials. Adv. Colloid Interface Sci. 243, 46–59 (2017)CrossRefGoogle Scholar
  31. Szczęśniak, B., Choma, J., Jaroniec, M.: Gas adsorption properties of hybrid graphene-MOF materials. J. Colloid Interface Sci. 514, 801–813 (2018)CrossRefGoogle Scholar
  32. Szczęśniak, B., Choma, J., Jaroniec, M.: Ultrahigh benzene adsorption capacity of graphene-MOF composite fabricated via MOF crystallization in 3D mesoporous graphene. Micropor. Mesopor. Mater. 279, 387–394 (2019)CrossRefGoogle Scholar
  33. Wang, Y., Zhang, W., Wu, X., Luo, C., Liang, T., Yan, G.: Metal-organic framework nanoparticles decorated with graphene: a high-performance electromagnetic wave absorber. J. Magn. Magn. Mater. 416, 226–230 (2016)CrossRefGoogle Scholar
  34. Weber, G., Bezverkhyy, I., Bellat, J.-P., Ballandras, A., Ortiz, G., Chaplais, G., Patarin, J., Coudert, F.X., Fuchs, A.H., Boutin, A.: Mechanism of water adsorption in the large pore form of the gallium-based MIL-53 metal-organic framework. Microporous Mesoporous Mater 222, 145–152 (2016)CrossRefGoogle Scholar
  35. Xu, X., Shi, W., Li, P., Ye, S., Ye, C., Ye, H., Lu, T., Zheng, A., Zhu, J., Xu, L., Zhong, M., Cao, X.: Facile fabrication of three-dimensional graphene and metal–organic framework composites and their derivatives for flexible all-solid-state supercapacitors. Chem. Mater. 29, 6058–6065 (2017)CrossRefGoogle Scholar
  36. Yang, S.J., Kim, T., Im, J.H., Kim, Y.S., Lee, K., Jung, H., Park, C.R.: MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 24, 464–470 (2012)CrossRefGoogle Scholar
  37. Yang, Y., Ge, L., Rudolph, V., Zhu, Z.: In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption. Dalton Trans. 43, 7028–7036 (2014)CrossRefGoogle Scholar
  38. Yun, S., Kang, S.O., Park, S., Park, H.S.: CO2-activated, hierarchical trimodal porous graphene frameworks for ultrahigh and ultrafast capacitive behavior. Nanoscale 6, 5296–5302 (2014)CrossRefGoogle Scholar
  39. Zhang, Y., Li, G., Lu, H., Lv, Q., Sun, Z.: Synthesis, characterization and photocatalytic properties of MIL-53(Fe)–graphene hybrid materials. RSC Adv. 4, 7594–7600 (2014)CrossRefGoogle Scholar
  40. Zhao, Y., Seredych, M., Zhong, Q., Bandosz, T.J.: Aminated graphite oxides and their composites with copper-based metal–organic framework: in search for efficient media for CO2 sequestration. RSC Adv. 3, 9932–9941 (2013)CrossRefGoogle Scholar
  41. Zhou, H., Zhang, J., Zhang, J., Yan, X.-F., Shen, X.-P., Yuan, A.-H.: Spillover enhanced hydrogen storage in Pt-doped MOF/graphene oxide composite produced via an impregnation method. Inorg. Chem. Commun. 54, 54–56 (2015a)CrossRefGoogle Scholar
  42. Zhou, X., Huang, W., Miao, J., Xia, Q., Zhang, Z., Wang, H., Li, Z.: Enhanced separation performance of a novel composite material GrO@MIL-101 for CO2/CH4 binary mixture. Chem. Eng. J. 266, 339–344 (2015b)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of ChemistryMilitary University of TechnologyWarsawPoland
  2. 2.Department of Chemistry and BiochemistryKent State UniversityKentUSA

Personalised recommendations