Advertisement

Adsorption

pp 1–13 | Cite as

Adsorption of hazardous gases in nuclear islands on monolayer MoS2 sheet

  • Zheng Zhang
  • Qiang ZhaoEmail author
  • Mei Huang
  • Xiaoping Ouyang
Article
  • 30 Downloads

Abstract

Monitoring and removing the hazardous gases (such as radioactive gases and hydrogen) in the nuclear islands are full with enormous challenges, although the two methods can improve the safety level of the nuclear power plant. Due to its excellent electronic and chemical properties, two dimensional materials are considered as the candidate for monitoring and removing the hazardous gases in the nuclear islands. In this paper, the adsorption of the hazardous gases on monolayer \(\text {MoS}_2\) sheet was investigated by using the first principles calculation method. The adsorption energy, total charge transfer, and density of states (DOS) were calculated to understand the adsorption mechanism and sensing performance of the monolayer \(\text {MoS}_2\) sheet to the hazardous gases. The results show that an attractive interaction exists between the hazardous gases and the monolayer \(\text {MoS}_2\) sheet. The magnitude of the adsorption energy demonstrates that physisorption dominates the adsorption of the hazardous gas molecules on the monolayer \(\text {MoS}_2\) sheet, but the adsorption of the dissociated H/I atom belongs to chemisorption. The DOS shows that the orbitals, H 1s and I 5p, play a crucial role in the adsorption, and the change of the electronic structure indicates that the monolayer \(\text {MoS}_2\) sheet might be a promising material which is used for monitoring the gaseous radioactive iodine in the nuclear islands.

Keywords

Hazardous gases Radioactive gases Hydrogen Monolayer \(\text {MoS}_2\) sheet First principles calculation 

Notes

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities under Grant Nos. 2017MS079 and 2018ZD10, and the National Natural Science Foundation of China under Grant No. 11705059.

References

  1. Adamyan, A.Z., Adamyan, Z.N., Aroutiounian, V.M., Arakelyan, A.H., Touryan, K.J., Turner, J.A.: Sol-gel derived thin-film semiconductor hydrogen gas sensor. Int. J. Hydrog. Energy 32(16), 4101 (2007).  https://doi.org/10.1016/j.ijhydene.2007.03.043 CrossRefGoogle Scholar
  2. Aghagoli, M.J., Shemirani, F.: Hybrid nanosheets composed of molybdenum disulfide and reduced graphene oxide for enhanced solid phase extraction of Pb(II) and Ni(II). Microchim. Acta 184(1), 237 (2017).  https://doi.org/10.1007/s00604-016-2000-7 CrossRefGoogle Scholar
  3. Ai, Y.J., Liu, Y., Lan, W.Y., Jin, J.R., Xing, J.L., Zou, Y.D., Zhao, C.F., Wang, X.K.: The effect of pH on the U(VI) sorption on graphene oxide (GO): a theoretical study. Chem. Eng. J. 343, 460 (2018).  https://doi.org/10.1016/j.cej.2018.03.027 CrossRefGoogle Scholar
  4. Akhmat, G., Zaman, K., Shukui, T., Sajjad, F., Khan, M.A., Khan, M.Z.: The challenges of reducing greenhouse gas emissions and air pollution through energy sources: evidence from a panel of developed countries. Environ. Sci. Pollut. Res. 21(12), 7425 (2014).  https://doi.org/10.1007/s11356-014-2693-2 CrossRefGoogle Scholar
  5. Ataca, C., Ciraci, S.: Functionalization of Single-Layer \(\text{ MoS }_2\) honeycomb structures. J. Phys. Chem. C 115(27), 13303 (2010).  https://doi.org/10.1021/jp2000442 CrossRefGoogle Scholar
  6. Böker, T., Severin, R., Müller, A., Janowitz, C., Manzke, R., Voß, D., Krüger, P., Mazur, A., Pollmann, J.: Band structure of \(\text{MoS}_2\), \(\text{MoSe}_2\), and alpha-\(\text{MoTe}_2\): angle-resolved photoelectron spectroscopy and ab-initio calculations. Phys. Rev. B 64(23), 235305 (2001).  https://doi.org/10.1103/PhysRevB.64.235305 CrossRefGoogle Scholar
  7. Brosi, A.R., Dewitt, T.W., Zeldes, H.: Decay of 8-day iodine131 to a metastable state of Xenon131. Phys. Rev. 75, 1615 (1949).  https://doi.org/10.1103/PhysRev.75.1615.2 CrossRefGoogle Scholar
  8. Burke, K., Perdew, J.P., Wang, Y.: Derivation of a generalized gradient approximation: the PW91 density functional. In: Dobson, J.F., Vignale, G., Das, M.P. (eds.) Electronic Density Functional Theory, pp. 88–111. Springer, Boston (1998).  https://doi.org/10.1007/978-1-4899-0316-7-7 CrossRefGoogle Scholar
  9. Butler, M.A.: Optical fiber hydrogen sensor. Appl. Phys. Lett. 45(10), 1007 (1984).  https://doi.org/10.1063/1.95060 CrossRefGoogle Scholar
  10. Calaprice, F.P., Happer, W., Schreiber, D.F., Lowry, M.M., Miron, E., Zeng, X.: Nuclear alignment and magnetic moments of \(\text{ Xe }^{133}\), \(\text{ Xe }^{133m}\), and \(\text{ Xe }^{131m}\) by spin exchange with optically pumped \(\text{ Rb }^{87}\). Phys. Rev. Lett 54(3), 174 (1985).  https://doi.org/10.1103/PhysRevLett.54.174 CrossRefPubMedGoogle Scholar
  11. Cao, R., Zhou, B., Jia, C., Zhang, X., Jiang, Z.: Theoretical study of the NO, \(\text{ NO }_2\), CO, \(\text{ SO }_2\), and \(\text{ NH }_3\) adsorptions on multi-diameter single-wall \(\text{ MoS }_2\) nanotube. J. Phys. D Appl. Phys. 49(4), 045106 (2016).  https://doi.org/10.1088/0022-3727/49/4/045106 CrossRefGoogle Scholar
  12. Cao, J., Zhou, J., Zhang, Y., Liu, X.: Theoretical study of \(\text{ H }_2\) adsorbed on monolayer \(\text{ MoS }_2\) doped with N, Si, P. Microelectron. Eng. 190, 63 (2018).  https://doi.org/10.1016/j.mee.2018.01.012 CrossRefGoogle Scholar
  13. Chen, D., Zhang, X., Tang, J., Cui, H., Li, Y.: Noble metal (Pt or Au)-doped monolayer \(\text{ MoS }_2\) as a promising adsorbent and gas-sensing material to \(\text{ SO }_2\), \(\text{ SOF }_2\), and \(\text{ SO }_2\text{ F }_2\): a DFT study. Appl. Phys. A 124(2), 194 (2018).  https://doi.org/10.1007/s00339-018-1629-y CrossRefGoogle Scholar
  14. Cho, S.Y., Kim, S.J., Lee, Y., Kim, J.S., Jung, W.B., Yoo, H.W., Kim, J., Jung, H.T.: Highly enhanced gas adsorption properties in vertically aligned \(\text{ MoS }_2\) layers. ACS Nano 9(9), 9314 (2015).  https://doi.org/10.1021/acsnano.5b04504 CrossRefPubMedGoogle Scholar
  15. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K., Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr. 220(5/6), 567 (2005).  https://doi.org/10.1524/zkri.220.5.567.65075 CrossRefGoogle Scholar
  16. Corner, A., Dan, V., Spence, A., Poortinga, W., Demski, C., Pidgeon, N.: Nuclear power, climate change and energy security: exploring british public attitudes. Energy Policy 39(9), 4823 (2011).  https://doi.org/10.1016/j.enpol.2011.06.037 CrossRefGoogle Scholar
  17. Ding, K., Lin, Y., Huang, M.: The enhancement of NO detection by doping strategies on monolayer \(\text{ MoS }_2\). Vacuum 130, 146 (2016).  https://doi.org/10.1016/j.vacuum.2016.05.005 CrossRefGoogle Scholar
  18. Du, Y., Wang, J., Zou, Y., Yao, W., Hou, J., Xia, L., Peng, A., Alsaedi, A., Hayat, T., Wang, X.: Synthesis of molybdenum disulfide/reduced graphene oxide composites for effective removal of Pb(II) from aqueous solutions. Sci. Bull. 62(13), 913 (2017).  https://doi.org/10.1016/j.scib.2017.05.025 CrossRefGoogle Scholar
  19. Elder, R., Allen, R.: Nuclear heat for hydrogen production coupling a very high/high temperature reactor to a hydrogen production plant. Prog. Nucl. Energy 51(3), 500 (2009)CrossRefGoogle Scholar
  20. Ewing, R.C.: Nuclear fuel cycle: environmental impact. MRS Bull. 33(4), 338 (2008).  https://doi.org/10.1557/mrs2008.68 CrossRefGoogle Scholar
  21. Ferreira, F., Carvalho, A., Moura, I.J., Coutinho, J., Ribeiro, R.: Adsorption of \(\text{ H }_2\), \(\text{ O }_2\), \(\text{ H }_2\)O, OH and H on monolayer \(\text{ MoS }_2\). J. Phys. Condens. Mat. 30(3), 035003 (2017).  https://doi.org/10.1088/1361-648X/aaa03f CrossRefGoogle Scholar
  22. Goncharov, B.I., Kozyr, V.N., Nosovskii, A.V., Oskolkov, B.Y., Fomin, V.V., Ivanov, E.A.: Effective decrease of radioactive inert gas emissions from nuclear power plants with RBMK reactors. Atom Energy 79(4), 722 (1995).  https://doi.org/10.1007/BF02415398 CrossRefGoogle Scholar
  23. Hao, L., Liu, Y., Du, Y., Chen, Z., Han, Z., Xu, Z., Zhu, J.: Highly enhanced \(\text{ H }_2\) sensing performance of few-layer \(\text{ MoS }_2\)/\(\text{ SiO }_2\)/Si heterojunctions by surface decoration of Pd nanoparticles. Nanoscale Res. Lett. 12(1), 567 (2017).  https://doi.org/10.1186/s11671-017-2335-y CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hao, L., Liu, Y., Gao, W., Liu, Y., Han, Z., Yu, L., Xue, Q., Zhu, J.: High hydrogen sensitivity of vertically standing layered \(\text{ MoS }_2\)/Si heterojunctions. J. Alloys Compd. 682, 29 (2014).  https://doi.org/10.1016/j.jallcom.2016.04.277 CrossRefGoogle Scholar
  25. Heck, R., Kelber, G., Schmidt, K., Zimmer, H.J.: Hydrogen reduction following severe accidents using the dual recombiner-igniter concept. Nucl. Eng. Des. 157(3), 311 (1995).  https://doi.org/10.1016/0029-5493(95)01009-7 CrossRefGoogle Scholar
  26. Hirshfeld, F.L.: Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 44(2), 129 (1977).  https://doi.org/10.1007/BF00549096 CrossRefGoogle Scholar
  27. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3), B864 (1964).  https://doi.org/10.1103/PhysRev.136.B864 CrossRefGoogle Scholar
  28. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965).  https://doi.org/10.1103/PhysRev.140.A1133 CrossRefGoogle Scholar
  29. Komesu, T., Le, D., Tanabe, I., Schwier, E.F., Kojima, Y., Zheng, M.T., Taguchi, K., Miyamoto, K., Okuda, T., Iwasawa, H., Shimada, K., Rahman, T.S., Dowben, P.A.: Adsorbate doping of \(\text{ MoS }_2\) and \(\text{ WSe }_2\): the influence of Na and CO. J. Phys. Condens. Mat. 29(28), 285501 (2017).  https://doi.org/10.1088/1361-648X/aa7482 CrossRefGoogle Scholar
  30. Kumar, A., Ahluwalia, P.K.: Electronic structure of transition metal dichalcogenides monolayers 1H-\(\text{ MX }_2\) (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors. Eur. Phys. J. B 85(6), 186 (2012).  https://doi.org/10.1140/epjb/e2012-30070-x CrossRefGoogle Scholar
  31. Lauritsen, J.V., Kibsgaard, J., Helveg, S., Topsoe, H., Clausen, B.S., Laegsgaard, E., Besenbacher, F.: Size-dependent structure of \(\text{ MoS }_2\) nanocrystals. Nat. Nanotechnol. 2(1), 53 (2007).  https://doi.org/10.1038/nnano.2006.171 CrossRefPubMedGoogle Scholar
  32. Lebegue, S., Eriksson, O.: Electronic structure of two-dimensional crystals from ab-initio theory. Phys. Rev. B 79(11), 5409 (2009).  https://doi.org/10.1103/PhysRevB.79.115409 CrossRefGoogle Scholar
  33. Li, H., Chi, Z., Li, J.: Covalent bonding synthesis of magnetic graphene oxide nanocomposites for Cr(III) removal. Desalin. Water Treat. 52(10–12), 1937 (2014).  https://doi.org/10.1080/19443994.2013.806224 CrossRefGoogle Scholar
  34. Li, X.D., Fang, Y.M., Wu, S.Q., Zhu, Z.Z.: Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer \(\text{MoS}_2\). AIP Adv. 5(5), 057143 (2015).  https://doi.org/10.1063/1.4921564 CrossRefGoogle Scholar
  35. Li, H., Huang, M., Cao, G.: Markedly different adsorption behaviors of gas molecules on defective monolayer \(\text{ MoS }_2\): a first-principles study. Phys. Chem. Chem. Phys. 18(22), 15110 (2016).  https://doi.org/10.1039/C6CP01362G CrossRefPubMedGoogle Scholar
  36. Li, K., Zhao, Y., Deng, J., He, C., Ding, S., Shi, W.: Adsorption of radioiodine on \(\text{Cu}_2\)O surfaces: a first-principles density functional study. Acta Phys. Chim. Sin. 32(9), 2264 (2016).  https://doi.org/10.3866/PKU.WHXB201606141 CrossRefGoogle Scholar
  37. Liu, Y., Hao, L., Gao, W., Wu, Z., Lin, Y., Li, G., Guo, W., Yu, L., Zeng, H., Zhu, J., Zhang, W.: Hydrogen gas sensing properties of \(\text{MoS}_2\)/Si heterojunction. Sens. Actuators B Chem. 211, 537 (2015).  https://doi.org/10.1016/j.snb.2015.01.129 CrossRefGoogle Scholar
  38. Liu, X., Li, L., Wei, Y., Zheng, Y., Xiao, Q., Feng, B.: Facile synthesis of boron- and nitride-doped \(\text{ MoS }_2\) nanosheets as fluorescent probes for the ultrafast, sensitive, and label-free detection of \(\text{ Hg }^{2+}\). Analyst 140(13), 4654 (2015).  https://doi.org/10.1039/C5AN00641D CrossRefPubMedGoogle Scholar
  39. Liu, X., Wang, X., Li, J., Wang, X.: Ozonated graphene oxides as high efficient sorbents for Sr(II) and U(VI) removal from aqueous solutions. Sci. China Chem. 59(7), 869 (2016).  https://doi.org/10.1007/s11426-016-5594-z CrossRefGoogle Scholar
  40. Liu, X., Xu, X.T., Sun, J., Alsaedi, A., Hayat, T., Li, J.X., Wang, X.K.: Insight into the impact of interaction between attapulgite and graphene oxide on the adsorption of U(VI). Chem. Eng. J. 343, 217 (2018).  https://doi.org/10.1016/j.cej.2018.02.113 CrossRefGoogle Scholar
  41. Lu, N., Guo, H., Li, L., Dai, J., Wang, L., Mei, W.N., Wu, X., Zeng, X.C.: \(\text{ MoS }_2\)/\(\text{ MX }_2\) heterobilayers: bandgap engineering via tensile strain or external electrical field. Nanoscale 6(5), 2879 (2014).  https://doi.org/10.1039/c3nr06072a CrossRefPubMedGoogle Scholar
  42. Luo, H., Cao, Y.J., Zhou, J., Feng, J.M., Cao, J.M., Guo, H.: Adsorption of \(\text{ NO }_2\), \(\text{ NH }_3\) on monolayer \(\text{ MoS }_2\) doped with Al, Si, and P: a first-principles study. Chem. Phys. Lett. 643, 27 (2016).  https://doi.org/10.1016/j.cplett.2015.10.077 CrossRefGoogle Scholar
  43. Ma, D., Ju, W., Li, T., Zhang, X., He, C., Ma, B., Lu, Z., Yang, Z.: The adsorption of CO and NO on the \(\text{ MoS }_2\) monolayer doped with Au, Pt, Pd, or Ni: a first-principles study. Appl. Surf. Sci. 383, 98 (2016).  https://doi.org/10.1016/j.apsusc.2016.04.171 CrossRefGoogle Scholar
  44. Martin, L.P., Pham, A.Q., Glass, R.S.: Electrochemical hydrogen sensor for safety monitoring. Solid State Ionics 175(1-4), 527 (2003).  https://doi.org/10.1016/j.ssi.2004.04.042 CrossRefGoogle Scholar
  45. Matsui, K., Ujita, H., Tashimo, M.: Role of nuclear energy in environment, economy and energy issues of the 21st century green house gas emission constraint effects. Prog. Nucl. Energy 50(2–6), 97 (2008).  https://doi.org/10.1016/j.pnucene.2007.10.010 CrossRefGoogle Scholar
  46. Mellouki, A., George, C., Chai, F., Mu, Y., Chen, J., Li, H.: Sources, chemistry, impacts and regulations of complex air pollution: preface. J. Environ. Sci. 40(2), 1 (2016).  https://doi.org/10.1016/j.jes.2015.11.002 CrossRefGoogle Scholar
  47. Menyah, K., Wolde-Rufael, Y.: CO2 emissions, nuclear energy, renewable energy and economic growth in the US. Energy Policy 38(6), 2911 (2010).  https://doi.org/10.1016/j.enpol.2010.01.024 CrossRefGoogle Scholar
  48. Mu, X.L., Gao, X., Zhao, H.T., George, M., Wu, T., Zhejiang, J.: Density functional theory study of the adsorptionof elemental mercury on a 1T-\(\text{ MoS }_2\) monolayer. Univ. Sci. A 19(1), 60 (2018).  https://doi.org/10.1631/jzus.A1700079 CrossRefGoogle Scholar
  49. Nikiforov, A.S., Zhikharev, M.I., Zemlyanukhin, V.I., Kulichenko, V.V., Nakhutin, I.E., Polyakov, A.S., Rakov, N.A.: Handling radioactive wastes from nuclear power plants and reprocessing spent nuclear fuel. Sov. At. Energy 50(2), 116 (1981).  https://doi.org/10.1007/BF01121166 CrossRefGoogle Scholar
  50. Ogata, Y., Yamasaki, T., Hanafusa, R.: High sensitive airborne radioiodine monitor. Appl. Radiat. Isot. 81(11), 119 (2013).  https://doi.org/10.1016/j.apradiso.2013.03.067 CrossRefPubMedGoogle Scholar
  51. Pei, H., Wang, J., Yang, Q., Yang, W., Hu, N., Suo, Y., Zhang, D., Li, Z., Wang, J.: Interfacial growth of nitrogen-doped carbon with multi-functional groups on the \(\text{ MoS }_2\)skeleton for efficient Pb(II) removal. Sci. Total Environ. 631–632, 912 (2018).  https://doi.org/10.1016/j.scitotenv.2018.02.324 CrossRefPubMedGoogle Scholar
  52. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phy. Rev. Lett. 77(18), 3865 (1996).  https://doi.org/10.1103/physrevlett.77.3865 CrossRefGoogle Scholar
  53. Perdew, J.P., Yue, W.: Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys. Rev. B 33(12), 8800 (1986).  https://doi.org/10.1103/physrevb.33.8800 CrossRefGoogle Scholar
  54. Pfrommer, B.G., Cote, M., Louie, S.G., Cohen, M.L.: Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 131, 233 (1997).  https://doi.org/10.1006/jcph.1996.5612 CrossRefGoogle Scholar
  55. Pick, M.A., Sonnenberg, K.: A model for atomic hydrogen-metal interactions-application to recycling, recombination and permeation. J. Nucl. Mater. 131(2), 208 (1985).  https://doi.org/10.1016/0022-3115(85)90459-3 CrossRefGoogle Scholar
  56. Rothwell, E.: The release of \(\text{ Kr }^{85}\) from irradiated uranium dioxide on post-irradiation annealing. J. Nucl. Mater. 5(2), 241 (1962).  https://doi.org/10.1016/0022-3115(62)90105-8 CrossRefGoogle Scholar
  57. Rudenko, A.N., Keil, F.J., Katsnelson, M.I., Lichtenstein, A.I.: Adsorption of diatomic halogen molecules on graphene: a van der Waals density functional study. Phys. Rev. B 82(3), 035427 (2010).  https://doi.org/10.1103/PhysRevB.82.035427 CrossRefGoogle Scholar
  58. Saha, N., Sarkar, A., Ghosh, A.B., Mondal, P., Satra, J., Adhikary, B.: Advanced catalytic performance of amorphous \(\text{ MoS }_2\) for degradation/reduction of organic pollutants in both individual and simultaneous fashion. Ecotox. Environ. Safe. 160, 290 (2018).  https://doi.org/10.1016/j.ecoenv.2018.05.023 CrossRefGoogle Scholar
  59. Sakama, M., Nagano, Y., Kitade, T., Shikino, O., Nakayama, S.: Correlation between Asian dust and specific radioactivities of fission products included in airborne samples in Tokushima, Shikoku Island, Japan, due to the Fukushima nuclear accident. Nucl. Data Sheets 120(2), 250 (2014).  https://doi.org/10.1016/j.nds.2014.07.059 CrossRefGoogle Scholar
  60. Schweiger, L.: An effective technique for the storage of short lived radioactive gaseous waste. Appl. Radiat. Isot. 69(9), 1185 (2011).  https://doi.org/10.1016/j.apradiso.2011.04.030 CrossRefPubMedGoogle Scholar
  61. Shinohara, N., Yoshida-Ohuchi, H.: Radiocesium contamination in house dust within evacuation areas close to the Fukushima Daiichi nuclear power plant. Environ. Int. 114, 107 (2018).  https://doi.org/10.1016/j.envint.2018.02.015 CrossRefPubMedGoogle Scholar
  62. Singh, N., Jabbour, G., Schwingenschlögl, U.: Optical and photocatalytic properties of two-dimensional \(\text{ MoS }_2\). Eur. Phys. J. B 85(11), 392 (2012).  https://doi.org/10.1140/epjb/e2012-30449-7 CrossRefGoogle Scholar
  63. Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.Y., Galli, G., Wang, F.: Emerging photoluminescence in monolayer \(\text{ MoS }_2\). Nano Lett. 10(4), 1271 (2010).  https://doi.org/10.1021/nl903868w CrossRefPubMedGoogle Scholar
  64. Subrahmanyam, K.S., Malliakas, C.D., Debajit, S., Armatas, G.S., Wu, J., Kanatzidis, M.G.: Ion-exchangeable molybdenum sulfide porous chalcogel: gas adsorption and capture of iodine and mercury. J. Am. Chem. Soc. 137(43), 13943 (2015).  https://doi.org/10.1021/jacs.5b09110 CrossRefPubMedGoogle Scholar
  65. Sun, Y., Wang, X., Song, W., Lu, S., Chen, C., Wang, X.: Mechanistic insights on the decontamination of Th(IV) on graphene oxide-based composites by EXAFS and modeling techniques. Environ. Sci. Nano 4(1), 222 (2016).  https://doi.org/10.1039/c6en00470a CrossRefGoogle Scholar
  66. Tapper, D.N., Comar, C.L.: Extrathyroidal gamma dose form the intake of milicurie levels of iodine-131. Health Phys. 9(8), 817 (1963).  https://doi.org/10.1097/00004032-196308000-00003 CrossRefPubMedGoogle Scholar
  67. Tong, Y., Liu, Y., Zhao, Y., Daniel, T., Chan, S.H., Zhu, C.: Selectivity of \(\text{ MoS }_2\) gas sensors based on a time constant spectrum method. Sens. Actuators A 255, 28 (2017).  https://doi.org/10.1016/j.sna.2016.12.024 CrossRefGoogle Scholar
  68. Tristant, D., Puech, P., Gerber, I.C.: Theoretical study of graphene doping mechanism by iodine molecules. J. Phys. Chem. C 119(21), 150513144947007 (2015).  https://doi.org/10.1021/acs.jpcc.5b03246 CrossRefGoogle Scholar
  69. Wang, Y., Shang, X., Wang, X., Tong, J., Xu, J.: Density functional theory calculations of NO molecule adsorption on monolayer \(\text{ MoS }_2\) doped by Fe atom. Mod. Phys. Lett. B 29(27), 1550160 (2015).  https://doi.org/10.1142/S0217984915501602 CrossRefGoogle Scholar
  70. Wang, Y., Wang, B., Huang, R., Gao, B., Kong, F., Zhang, Q.: First-principles study of transition-metal atoms adsorption on \(\text{ MoS }_2\) monolayer. Phys. E 63(9), 276 (2014).  https://doi.org/10.1016/j.physe.2014.06.017 CrossRefGoogle Scholar
  71. Wang, H., Wen, F., Li, X., Gan, X., Yang, Y., Chen, P., Zhang, Y.: Cerium-doped \(\text{ MoS }_2\) nanostructures: efficient visible photocatalysis for Cr(VI) removal. Sep. Purif. Technol. 170, 190 (2016).  https://doi.org/10.1016/j.seppur.2016.06.049 CrossRefGoogle Scholar
  72. Wang, W., Yang, C., Bai, L., Li, M., Li, W.: First-principles study on the structural and electronic properties of monolayer \(\text{ MoS }_2\) with S-vacancy under uniaxial tensile strain. Nanomaterials 8(2), 74 (2018).  https://doi.org/10.3390/nano8020074 CrossRefPubMedCentralGoogle Scholar
  73. Wei, H., Gui, Y., Kang, J., Wang, W.B., Tang, C.: A DFT study on the adsorption of \(\text{ H }_2\text{ S }\) and \(\text{ SO }_2\) on Ni doped \(\text{ MoS }_2\) monolayer. Nanomaterials 8(9), 646 (2018).  https://doi.org/10.3390/nano8090646 CrossRefPubMedCentralGoogle Scholar
  74. Wu, D., Lou, Z., Wang, Y., Xu, T., Shi, Z., Xu, J., Tian, Y., Li, X.J.: Construction of \(\text{ MoS }_2\)/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor. Nanotechnology 28(43), 435503 (2017).  https://doi.org/10.1088/1361-6528/aa89b5 CrossRefPubMedGoogle Scholar
  75. Wu, P., Yin, N.Q., Li, P., Cheng, W.J., Huang, M.: The adsorption and diffusion behavior of noble metal adatoms (Pd, Pt, Cu, Ag and Au) on a \(\text{ MoS }_2\) monolayer: a first-principles study. Phys. Chem. Chem. Phys. 19(31), 20713 (2015).  https://doi.org/10.1039/C7CP04021K CrossRefGoogle Scholar
  76. Xu, Z., Lv, X., Chen, J., Jiang, L., Lai, Y., Li, J.: First principles study of adsorption and oxidation mechanism of elemental mercury by HCl over \(\text{ MoS }_2\)(1 0 0) surface. Chem. Eng. J. 308, 1225 (2017).  https://doi.org/10.1016/j.cej.2016.10.059 CrossRefGoogle Scholar
  77. Yue, Q., Chang, S., Qin, S., Li, J.: Functionalization of monolayer \(\text{ MoS }_2\) by substitutional doping: a first-principles study. Phys. Lett. A 377(19–20), 1362 (2013).  https://doi.org/10.1016/j.physleta.2013.03.034 CrossRefGoogle Scholar
  78. Zhang, Y.H., Chen, J.L., Yue, L.J., Zhang, H.L., Li, F.: Tuning CO sensing properties and magnetism of \(\text{MoS}_2\) monolayer through anchoring transition metal dopants. Comput. Theor. Chem. 1104, 12 (2017).  https://doi.org/10.1016/j.comptc.2017.01.026 CrossRefGoogle Scholar
  79. Zhang, S.L., Yue, H., Liang, X., Yang, W.C.: Liquid-phase co-exfoliated graphene/\(\text{MoS}_2\) nanocomposite for methanol gas sensing. J. Nanosci. Nanotechnol. 15(10), 8004 (2015).  https://doi.org/10.1166/jnn.2015.11254 CrossRefPubMedGoogle Scholar
  80. Zhang, Z., Zhao, Q., Huang, M., Zhang, X., Ouyang, X.: Chemisorption of metallic radionuclides on a monolayer \(\text{ MoS }_2\) nanosheet. Nanoscale Adv. (2018).  https://doi.org/10.1039/c8na00057 CrossRefGoogle Scholar
  81. Zhao, G., Wen, T., Yang, X., Yang, S., Liao, J., Hu, J., Shao, D., Wang, X.: Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans. 41(20), 6182 (2012).  https://doi.org/10.1039/C2DT00054G CrossRefPubMedGoogle Scholar
  82. Zhao, Q., Zhang, Z., Ouyang, X.: Adsorption of radionuclides on the monolayer \(\text{ MoS }_2\). Mater. Res. Express 5, 045506 (2018).  https://doi.org/10.1088/2053-1591/aaba90 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Passive Safety Technology for Nuclear EnergyNorth China Electric Power UniversityBeijingPeople’s Republic of China
  2. 2.School of Nuclear Science and EngineeringNorth China Electric Power UniversityBeijingPeople’s Republic of China
  3. 3.Northwest Institute of Nuclear TechnologyXi’anPeople’s Republic of China
  4. 4.School of Materials Science and EngineeringXiangtan UniversityXiangtanPeople’s Republic of China

Personalised recommendations