, Volume 25, Issue 1, pp 95–103 | Cite as

Experimental study of NO and NO2 adsorption on a fresh or dried NaY zeolite: influence of the gas composition by breakthrough curves measurements

  • F. Delachaux
  • C. VallièresEmail author
  • H. Monnier
  • M.-T. Lecler


Adsorption of NO, NO2 and NO + NO2 was studied with and without O2 in the gas feed on NaY zeolite (Si/Al = 2.55) at 30 °C and 101.3 kPa. The influence of residual water in NaY was also studied in presence of O2 in the gaseous flux. During adsorption of NO, NO2 is produced in presence of O2 in the gas feed, due to the formation of oxygen species at the surface of the zeolite. Then, created NO2 reacts with residual H2O to form NO. Without O2, the production of NO2 does not occur. If residual H2O is removed, reaction of NO2 with H2O leading to the formation of NO does not happen. Whether with or without O2 in the gas feed during NO2 adsorption, the evolution of NO and NO2 outlet concentrations are similar. First, NO2 is adsorbed, producing NO by reacting with residual H2O and then, the production of NO decreases while NO2 outlet concentration increases. NO2 breakthrough time is slightly higher without O2. In absence of residual water, no NO is produced. Concerning adsorption of NO and NO2 mixture, the evolution of outlet concentrations is different in presence or in absence of O2. With O2, final outlet concentrations of NO and NO2 are not equal to inlet concentrations unlike what happens without O2. With a dried NaY sample, NO2 is adsorbed without forming NO. For all experiments performed, NO is not adsorbed whereas NaY is interesting for NO2 adsorption, even in gaseous mixture adsorption.


NO NO2 Co-adsorption Breakthrough curves NaY 


  1. AFNOR: Mesurage des émissions de gaz d’échappement - Partie 1: Mesurage des émissions de gaz et de particules au banc d’essai. (2006)Google Scholar
  2. Bentrup, U., Brückner, A., Richter, M., Fricke, R.: NOx adsorption on MnO2/NaY composite: An in situ FTIR and EPR study. Appl. Catal. B Environ. 32, 229–241 (2001). CrossRefGoogle Scholar
  3. Borchert, H., Baerns, M.: The effect of oxygen-anion conductivity of metal-oxide doped lanthanum oxide catalysts on hydrocarbon selectivity in the oxidative coupling of methane. J. Catal. 168, 315–320 (1997). CrossRefGoogle Scholar
  4. Che, M., Tench, A.J.: Characterization and Reactivity of Molecular Oxygen Species on Oxide Surfaces. Presented at the: (1983)Google Scholar
  5. Chi, Y., Chuang, S.S.C.: Infrared and TPD Studies of Nitrates Adsorbed on Tb4O7, La2O3, BaO, and MgO/y-Al2O3. J. Phys. Chem. B. 104, 4673–4683 (2000). CrossRefGoogle Scholar
  6. IARC: Diesel and Gasoline Engine Exhausts and Some Nitroarenes. (2014)Google Scholar
  7. International Zeolite Association: FAU: Framework Type, (2017)
  8. Kašpar, J., Fornasiero, P., Hickey, N.: Automotive catalytic converters: current status and some perspectives. Catal. Today. 77, 419–449 (2003). CrossRefGoogle Scholar
  9. Kim, C.H., Qi, G., Dahlberg, K., Li, W.: Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science 327, 1624–1627 (2010). CrossRefGoogle Scholar
  10. Koebel, M., Elsener, M., Marti, T.: NOx-reduction in diesel exhaust gas with urea and selective catalytic reduction. Combust. Sci. Technol. 121, 85–102 (1996). CrossRefGoogle Scholar
  11. Koebel, M., Elsener, M., Kleemann, M.: Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines. Catal. Today 59, 335–345 (2000)CrossRefGoogle Scholar
  12. Leblanc, E., Jokela, K., Perier-Camby, L., Thomas, G.: Étude physico-chimique des réactions entre oxydes d’azote Application à l’analyse de ces gaz en sortie de systèmes de combustion. J. Chim. Phys. Phys. Chim. Biol. 96, 759–777 (1999). CrossRefGoogle Scholar
  13. Li, G., Larsen, S.C., Grassian, V.H.: Catalytic reduction of NO2 in nanocrystalline NaY zeolite. J. Mol. Catal. A Chem 227, 25–35 (2005). CrossRefGoogle Scholar
  14. Majewski, W.A.: What are diesel emissions, (2017)
  15. Monticelli, O., Loenders, R., Jacobs, P.A., Martens, J.A.: NOx removal from exhaust gas from lean burn internal combustion engines through adsorption on FAU type zeolites cation exchanged with alkali metals and alkaline earth metals. Appl. Catal. B Environ. 215–220 (1999).
  16. Savara, A., Sachtler, W.M.H., Weitz, E.: TPD of NO2– and NO3– from Na–Y: the relative stabilities of nitrates and nitrites in low temperature DeNOx catalysis. Appl. Catal. B Environ. 90, 120–125 (2009). CrossRefGoogle Scholar
  17. Sedlmair, C., Gil, B., Seshan, K., Jentys, A., Lercher, J.A.: An in situ IR study of the NOx adsorption/reduction mechanism on modified Y zeolites. Phys. Chem. Chem. Phys. 5, 1897–1905 (2003). CrossRefGoogle Scholar
  18. Sultana, A., Loenders, R., Monticelli, O., Kirschhock, C., Jacobs, P.A., Martens, J.A.: DeNOx of exhaust Gas from Lean-Burn engines through reversible adsorption of N2O3 in alkali metal cation exchanged faujasite-type zeolites. Angew. Chemie Int. Ed. 39, 2934–2937 (2000).;2-E CrossRefGoogle Scholar
  19. Szanyi, J., Hun Kwak, J., Moline, R.A., Peden, C.H.F.: The adsorption of NO2 and the NO + O2 reaction on Na-Y,FAU: an in situ FTIR investigation. Phys. Chem. Chem. Phys. 5, 4045–4051 (2003). CrossRefGoogle Scholar
  20. Szanyi, J., Kwak, J.H., Peden, C.H.F.: The effect of water on the adsorption of NO2 in Na– and Ba–Y, FAU Zeolites: a Combined FTIR and TPD Investigation. J. Phys. Chem. B. 108, 3746–3753 (2004). CrossRefGoogle Scholar
  21. Szanyi, J., Hun Kwak, J., Burton, S., Rodriguez, J.A., Peden, C.H.F.: Characterization of NOx species in dehydrated and hydrated Na- and Ba-Y, FAU zeolites formed in NO2 adsorption. J. Electron Spectros. Relat. Phenomena. 150, 164–170 (2006). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut National de Recherche et de SécuritéVandoeuvre-lès-Nancy CedexFrance
  2. 2.Laboratoire Réactions et Génie des ProcédésUniversité de Lorraine, CNRS, LRGPNancyFrance

Personalised recommendations