Advertisement

Adsorption

, Volume 25, Issue 1, pp 51–62 | Cite as

Pure and M-doped (M=Zn, Cu, Ni, Co) cadmium oxide nanosheets, novel adsorbents for the adsorption of ethyl benzene and ortho, meta, para xylene: a theoretical study

  • Davood FarmanzadehEmail author
  • Azadeh Valipour
Article
  • 70 Downloads

Abstract

The electronic and structural properties investigation of pure and zinc, copper, nickel, cobalt doped cadmium oxide nanosheets (CdONS) and the adsorption of ethyl benzene (EB) and ortho- meta- para xylene (OX, MX, PX) on these nanosheets were studied by density functional theory calculations. The adsorption energy, charge transfer, energy gap, spatial distribution of HOMO and LUMO orbitals and electron density scheme of ethyl benzene and ortho, meta, para xylene molecules on pure and doped CdONS are calculated. The obtained results show that the adsorption energy value increases after doping Zn, Cu, Ni and Co atoms in oxygen substituted state, especially in NiOCdONS and CoOCdONS. The adsorption energy of EB, OX, MX and PX on NiOCdONS and CoOCdONS is about − 260 kJ/mol whereas its value on pure CdONS is approximately − 100 kJ/mol. In comparison with pure CdONS, the adsorption energy of the molecules on MCdCdONS, decreases except in NiCdCdONS. The adsorption energy of OX, MX and PX on NiCdCdONS is − 263.12, − 150.94 and − 151.85 kJ/mol, respectively. Also, the results show that the value of energy gap increases after the adsorption of EB, OX, MX and PX on CoOCdONS, therefore, CoOCdONS can be proposed as proper adsorbent and sensor for these molecules.

Keywords

Cadmium oxide nanosheet Ethyl benzene Xylene Density functional theory Adsorption 

Notes

Acknowledgements

The authors acknowledge the supports by University of Mazandaran as research facilities and financial grants.

Supplementary material

10450_2018_9986_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1773 KB)

References

  1. Alaerts, L., Kirschhock, C.E.A., Maes, M., Van Der Veen, M.A., Finsy, V., Depla, A., Martens, J.A., Baron, G.V., Jacobs, P.A., Denayer, J.F.M.: Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47. Angew. Chem. Int. Ed. 46, 4293–4297 (2007)Google Scholar
  2. Benedek, N.A., Snook, I.K., Latham, K., Yarovsky, I.: Application of numerical basis sets to hydrogen bonded systems: a density functional theory study. J. Chem. Phys. 122, 144102 (2005)Google Scholar
  3. Carballeda-Galicia, D.M., Castanedo-Perez, R., Jimenez-Sandoval, O., Jimenez-Sandoval, S., Torres-Delgado, G., Zuniga-Romero, C.I.: High transmittance CdO thin films obtained by the sol-gel method. Thin Solid Films 371, 105–108 (2000)Google Scholar
  4. Caselli, M., de Gennaro, G., Marzocca, A., Trizio, L., Tutino, M.: Assessment of the impact of the vehicular traffic on BTEX concentration in ring roads in urban areas of Bari (Italy). Chemosphere 81, 306–311 (2010)Google Scholar
  5. Chin, C.-J.M., Shih, L.-C., Tsai, H.-J., Liu, T.-K.: Adsorption of o-xylene and p-xylene from water by SWCNTs. Carbon N. Y. 45, 1254–1260 (2007)Google Scholar
  6. Choi, Y.-S., Lee, C.-G., Cho, S.M.: Transparent conducting ZnxCd1−xO thin films prepared by the sol-gel process. Thin Solid Films 289, 153–158 (1996)Google Scholar
  7. Cooper, J.S., Kiiveri, H., Hubble, L.J., Chow, E., Webster, M.S., Müller, K.-H., Sosa-Pintos, A., Bendavid, A., Raguse, B., Wieczorek, L.: Quantifying BTEX in aqueous solutions with potentially interfering hydrocarbons using a partially selective sensor array. Analyst 140, 3233–3238 (2015)Google Scholar
  8. Dakhel, A.A.: Influence of hydrogenation on the electrical and optical properties of CdO thin films. Semicond. Sci. Technol. 23, 55017 (2008)Google Scholar
  9. de León-Gutiérrez, L.R., Cayente-Romero, J.J., Peza-Tapia, J.M., Barrera-Calva, E., Martínez-Flores, J.C., Ortega-López, M.: Some physical properties of Sn-doped CdO thin films prepared by chemical bath deposition. Mater. Lett. 60, 3866–3870 (2006)Google Scholar
  10. Delley, B.: DMol, a standard tool for density functional calculations: review and advances. Theor. Comput. Chem. 2, 221–254 (1995)Google Scholar
  11. Delley, B.: From molecules to solids with the DMol 3 approach. J. Chem. Phys. 113, 7756–7764 (2000)Google Scholar
  12. El-Salaam, K.M.A., Hassan, E.A.: Active surface centres in a heterogeneous CdO catalyst for ethanol decomposition. Surf. Technol. 16, 121–128 (1982)Google Scholar
  13. Feng, C., Wang, C., Zhang, H., Li, X., Wang, C., Cheng, P., Ma, J., Sun, P., Gao, Y., Zhang, H.: Enhanced sensitive and selective xylene sensors using W-doped NiO nanotubes. Sens. Actuators B 221, 1475–1482 (2015)Google Scholar
  14. Ferro, R., Rodríguez, J.A.: Influence of F-doping on the transmittance and electron affinity of CdO thin films suitable for solar cells technology. Sol. Energy Mater. Sol. Cells 64, 363–370 (2000)Google Scholar
  15. Fishbein, L.: An overview of environmental and toxicological aspects of aromatic hydrocarbons II toluene. Sci. Total Environ. 42, 267–288 (1985a)Google Scholar
  16. Fishbein, L.: An overview of environmental and toxicological aspects of aromatic-hydrocarbons IV ethylbenzene. Sci. Total Environ. 44, 269–287 (1985b)Google Scholar
  17. Fishbein, L.: An overview of environmental and toxicological aspects of aromatic hydrocarbons III Xylene. Sci. Total Environ. 43, 165–183 (1985c)Google Scholar
  18. Fu, X., Liu, J., Han, T., Zhang, X., Meng, F., Liu, J.: A three-dimensional hierarchical CdO nanostructure: preparation and its improved gas-diffusing performance in gas sensor. Sens. Actuators B 184, 260–267 (2013)Google Scholar
  19. Gao, H., Wei, D., Lin, P., Liu, C., Sun, P., Shimanoe, K., Yamazoe, N., Lu, G.: The design of excellent xylene gas sensor using Sn-doped NiO hierarchical nanostructure. Sens. Actuators B Chem. 253, 1152–1162 (2017)Google Scholar
  20. Ghoshal, T., Kar, S., Chaudhuri, S.: Synthesis of nano and micro crystals of Cd(OH)2 and CdO in the shape of hexagonal sheets and rods. Appl. Surf. Sci. 253, 7578–7584 (2007)Google Scholar
  21. Granato, M.A., Martins, V.D., Ferreira, A.F.P., Rodrigues, A.E.: Adsorption of xylene isomers in MOF UiO-66 by molecular simulation. Microporous Mesoporous Mater. 190, 165–170 (2014)Google Scholar
  22. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)Google Scholar
  23. Gupta, R.K., Ghosh, K., Patel, R., Mishra, S.R., Kahol, P.K.: Highly conducting and transparent tin-doped CdO thin films for optoelectronic applications. Mater. Lett. 62, 4103–4105 (2008)Google Scholar
  24. Gurumurugan, K., Mangalaraj, D., Narayandass, S.K., Sekar, K., Vallabhan, C.P.G.: Characterization of transparent conducting CdO films deposited by spray pyrolysis. Semicond. Sci. Technol. 9, 1827 (1994)Google Scholar
  25. Haq, B.U., Ahmed, R., Goumri-Said, S.: DFT characterization of cadmium doped zinc oxide for photovoltaic and solar cell applications. Sol. Energy Mater. Sol. Cells 130, 6–14 (2014)Google Scholar
  26. Hirshfeld, F.L.: Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta. 44, 129–138 (1977)Google Scholar
  27. Inada, Y., Orita, H.: Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: evidence of small basis set superposition error compared to Gaussian basis sets. J. Comput. Chem. 29, 225–232 (2008)Google Scholar
  28. Jensen, F.: Introduction to Computational Chemistry. Wiley, Hoboken (2017)Google Scholar
  29. Khan, S.A., Azam, S., Shah, F.A., Amin, B.: Electronic structure and optical properties of CdO from bulk to nanosheet: DFT approach. Opt. Mater. 47, 372–378 (2015)Google Scholar
  30. Lachet, V., Boutin, A., Tavitian, B., Fuchs, A.H.: Computational study of p-xylene/m-xylene mixtures adsorbed in NaY zeolite. J. Phys. Chem. B. 102, 9224–9233 (1998)Google Scholar
  31. Li, F., Guo, S., Shen, J., Shen, L., Sun, D., Wang, B., Chen, Y., Ruan, S.: Xylene gas sensor based on Au-loaded WO3 H2O nanocubes with enhanced sensing performance. Sens. Actuators B 238, 364–373 (2017)Google Scholar
  32. Liu, F.F., Peng, C., Ng, J.C.: BTEX in vitro exposure tool using human lung cells: trips and gains. Chemosphere. 128, 321–326 (2015)Google Scholar
  33. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)Google Scholar
  34. Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992)Google Scholar
  35. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)Google Scholar
  36. Pourzamani, H., Parastar, S., Hashemi, M.: The elimination of xylene from aqueous solutions using single wall carbon nanotube and magnetic nanoparticle hybrid adsorbent. Process Saf. Environ. Prot. 109, 688–696 (2017)Google Scholar
  37. Raj, D.S., Krishnakumar, T., Jayaprakash, R., Prakash, T., Leonardi, G., Neri, G.: CO sensing characteristics of hexagonal-shaped CdO nanostructures prepared by microwave irradiation. Sens. Actuators B 171, 853–859 (2012)Google Scholar
  38. Rajesh, N., Kannan, J.C., Leonardi, S.G., Neri, G., Krishnakumar, T.: Investigation of CdO nanostructures synthesized by microwave assisted irradiation technique for NO2 gas detection. J. Alloy. Compd. 607, 54–60 (2014)Google Scholar
  39. Sack, T.M., Steele, D.H., Hammerstrom, K., Remmers, J.: A survey of household products for volatile organic compounds. Atmos. Environ. A 26, 1063–1070 (1992)Google Scholar
  40. Saghatforoush, L.A., Mehdizadeh, R., Sanati, S., Hasanzadeh, M.: Aqueous solution synthesis of plate-like Cd(OH)2 nanostructures and their conversion to CdO nanoparticles. Synth. React. Inorg. Met. Nano-Met. Chem. 42, 1285–1290 (2012)Google Scholar
  41. Salunkhe, R.R., Dhawale, D.S., Gujar, T.P., Lokhande, C.D.: Structural, electrical and optical studies of SILAR deposited cadmium oxide thin films: annealing effect. Mater. Res. Bull. 44, 364–368 (2009)Google Scholar
  42. Shi, W., Wang, C., Wang, H., Zhang, H.: Hexagonal nanodisks of cadmium hydroxide and oxide with nanoporous structure. Cryst. Growth Des. 6, 915–918 (2006)Google Scholar
  43. Snyder, R., Kali, G.F.: A perspective on benzene leukemogenesis. Crit. Rev. Toxicol. 24, 177–209 (1994)Google Scholar
  44. Srinivasaraghavan, R., Chandiramouli, R., Jeyaprakash, B.G., Seshadri, S.: Quantum chemical studies on CdO nanoclusters stability. Spectrochim. Acta A 102, 242–249 (2013)Google Scholar
  45. Tsuda, N., Nasu, K., Fujimori, A., Siratori, K.: Electronic Conduction in Oxides. Springer, New York (2013)Google Scholar
  46. Wambugu, C., Marvins, A.D., Das, J., Rene, E.R.: Conventional bioprocesses for the removal of gas-phase contaminants. Res. Rev. Insights 1, 1–2 (2017)Google Scholar
  47. Yu, F., Ma, J., Wu, Y.: Adsorption of toluene, ethylbenzene and m-xylene on multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. J. Hazard. Mater. 192, 1370–1379 (2011)Google Scholar
  48. Yu, F., Ma, J., Wang, J., Zhang, M., Zheng, J.: Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution. Chemosphere 146, 162–172 (2016)Google Scholar
  49. Zhu, Y., Mendelsberg, R.J., Zhu, J., Han, J., Anders, A.: Applied surface science transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition. Appl. Surf. Sci. 265, 738–744 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physical Chemistry, Faculty of ChemistryUniversity of MazandaranBabolsarIran

Personalised recommendations