, Volume 25, Issue 1, pp 63–74 | Cite as

Zig-zag boron nitride nanotubes functionalization with acetylene molecules: a density functional theory study

  • R. Ponce-PérezEmail author
  • Gregorio H. Cocoletzi
  • Noboru Takeuchi


Spin-polarized first-principles total-energy calculations have been performed in order to investigate the organic functionalization of zig-zag boron nitride nanotubes (BNNTs) with acetylene molecules. Calculations have been done within the periodic density functional theory (DFT), including van der Waals interactions. We have considered zig-zag (n, 0) BNNTs with n = 5, 10 and 15. Nanotubes with no defects exhibit weak interactions with the acetylene molecules. Therefore, we have generated boron and nitrogen vacancy-type defects to favor the adsorption. Results show that chemisorption occurs in all cases with adsorption energies in the range of − 3.6 eV to − 5.3 eV, with adsorption in nanotube (5, 0) and (10, 0) being the most and least favorable, respectively. We find that nanotubes with boron vacancies show a stronger interaction than the nanotubes with nitrogen vacancies. Minimum energy pathways show that activation energies are of the order of 0.1–1.6 eV, with the lowest energy barrier for the nanotubes with nitrogen vacancies. Analysis of the density of states (DOS) show that the organic molecule modifies the electronic structure.


Boron nitride nanotubes Density functional theory Acetylene Minimum energy path 



G.H.C. Acknowledges the financial support of VIEP-BUAP, grant HECG-EXC-157, CONACYT project #223180 and Cuerpo Académico Física Computacional de la Materia Condensada (BUAP-CA-191). N.T. thanks DGAPA-UNAM project IN100516, and Conacyt grant A1-S-9070 of the Call of Proposals for Basic Scientific Research 2017–2018 for partial financial support, and DGAPA-UNAM for a scholarship for a sabbatical leave at the University of California, Riverside. Calculations were performed in the DGCTIC-UNAM Supercomputing Center, project LANCAD-UNAM-DGTIC-051, Centro de Computo IFUAP, and LNS-BUAP.


  1. Anota, E.C., Cocoletzi, G.H.: First-principles simulations of the chemical functionalization of (5, 5) boron nitride nanotubes. J. Mol. Model. 19, 2335–2341 (2013)CrossRefGoogle Scholar
  2. Beheshtian, J., Peyghan, A.A., Bagheri, Z.: Adsorption of Na, Mg, and Al atoms on BN nanotubes. Thin Solid Films 526, 139–142 (2012)CrossRefGoogle Scholar
  3. Beheshtian, J., Peyghan, A.A., Tabar, M.B., Bagheri, Z.: DFT study on the functionalization of a BN nanotube with sulfamide. Appl. Surf. Sci. 266, 182–187 (2013)CrossRefGoogle Scholar
  4. Blase, X., Rubio, A., Louie, S.G., Cohen, M.L.: Stability and band gap constancy of boron nitride nanotubes. Europhys. Lett. 28, 335–340 (1994)CrossRefGoogle Scholar
  5. Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G., Zettl, A.: Boron nitride nanotubes. Science 269, 966 (1995)CrossRefGoogle Scholar
  6. Ciofani, G., Raffa, V., Menciassi, A., Cuschieri, A.: Boron nitride nanotubes: an innovative tool for nanomedicine. Nano Today 4, 8–10 (2009)CrossRefGoogle Scholar
  7. Ciofani, G., Genchi, G.G., Liakos, I., Athanassiou, A., Dinucci, D., Chiellini, F., Mattoli, V.: A simple approach to covalent functionalization of boron nitride nanotubes. J. Colloid Interface Sci. 374, 308–314 (2012)CrossRefGoogle Scholar
  8. Dion, M., Rydberg, H., Schroder, E., Langreth, D.C., Lundqvist, B.I.: Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004)CrossRefGoogle Scholar
  9. Esrafili, M.D., Nurazar, R.: A DFT study on the possibility of using boron nitride nanotubes as a dehydrogenation catalyst for methanol. Appl. Surf. Sci. 314, 90–96 (2014)CrossRefGoogle Scholar
  10. Fan, G., Zhu, S., Ni, K., Xu, H.: Theoretical study of the adsorption of aromatic amino acids on a single-wall boron nitride nanotube with empirical dispersion correction. Can. J. Chem. 95(6), 710–716 (2017)CrossRefGoogle Scholar
  11. Giannozzi, P., et al.: Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009)CrossRefGoogle Scholar
  12. Golberg, D., Bando, Y., Tang, C., Zhi, C., Nanotubes, B.N.: Boron nitride nanotubes. Adv. Mater. 19, 2413–2432 (2007)CrossRefGoogle Scholar
  13. Hamada, N., Sawada, S., Oshiyama, A.: New one-dimensional conductors: graphitic microtubules. Phys. Rev. Lett. 68, 1579–1581 (1992)CrossRefGoogle Scholar
  14. Henkelman, G., Jonsson, H.: Improved tangent estimate in the nudge elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000)CrossRefGoogle Scholar
  15. Henkelman, G., Uberuaga, B.P., Jonsson, H.: A climb image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000)CrossRefGoogle Scholar
  16. Hou, S., Shen, Z., Zhang, J., Zhao, X., Xue, Z.: Ab initio calculations on the open end of single-walled BN nanotubes. Chem. Phys. Lett. 393, 179–183 (2004)CrossRefGoogle Scholar
  17. Lee, R.S., Gavillet, J., Lamy, M., de la Chapelle, A., Loiseau, J.-L., Cochon, D., Pigache, J., Thibault, F., Willaime: Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration. Phys. Rev. B 64, 121405 (2001) R)CrossRefGoogle Scholar
  18. Loiseau, A., Willaime, F., Demoncy, N., Hug, G., Pascard, H.: Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett. 76, 4737 (1996)CrossRefGoogle Scholar
  19. Matarin, O., Rimola, A.: Influence of defects in boron nitride nanotubes in the adsorption of molecules. Insights from B3LYP-D2* periodic simulations. Crystals 6, 63 (2016)CrossRefGoogle Scholar
  20. Menon, M., Srivastava, D.: Structure of boron nitride nanotubes: tube closing versus chirality. Chem. Phys. Lett. 307, 407 (1999)CrossRefGoogle Scholar
  21. Methfessel, M., Paxton, A.T.: High precision sampling for Brillouin-zone integrations in metals. Phys. Rev. B 40, 3616 (1989)CrossRefGoogle Scholar
  22. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)CrossRefGoogle Scholar
  23. Mukhopadhyay, S., Gowtham, S., Scheicher, R.H., Pandey, R., Karna, S.P.: Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials. Nanotechnology 21, 165703 (2010)CrossRefGoogle Scholar
  24. Pamela Rubio, N., Takeuchi: Density functional theory study of the organic functionalization of hydrogenated graphene. J. Phys. Chem. C 117, 18738 (2013)CrossRefGoogle Scholar
  25. Paura, E.N.C., da Cunha, W.F., Roncaratti, L.F., Martins, J.B.L., e Silva, G.M., Gargano, R.: CO2 adsorption on single-walled boron nitride nanotubes containing vacancy defects. RSC Adv. 5, 27412 (2015)CrossRefGoogle Scholar
  26. Perdew, J.P., Burke, S., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  27. Ponce-Pérez, R., Cocoletzi, G.H., Takeuchi, N.: Acetylene chain reaction on hydrogenated boron nitride monolayers: a density functional theory study. J. Mol. Model. 23, 359 (2017)CrossRefGoogle Scholar
  28. Roman-Pérez, G., Soler, J.M.: Efficient implementation of a van der waals density functional: application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102 (2009)CrossRefGoogle Scholar
  29. Rubio, A., Corkill, J.L., Cohen, M.L.: Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49, 5081–5084 (1994)CrossRefGoogle Scholar
  30. Rubio-Pereda, P., Takeuchi, N.: Density functional theory study of the organic functionalization of hydrogenated silicene. J. Chem. Phys. 138, 194702 (2013)CrossRefGoogle Scholar
  31. Shen, H.: Thermal-conductivity and tensile-properties of BN, SiC and Ge nanotubes. Comput. Mater. Sci. 47, 220–224 (2009)CrossRefGoogle Scholar
  32. Solimannejad, M., Noormohammadbeigi, M.: Boron nitride nanotube (BNNT) as a sensor of hydroperoxyl radical (HO2): a DFT study. J. Iran. Chem. Soc. 14, 471–476 (2017)CrossRefGoogle Scholar
  33. Thonhauser, T., Cooper, V.R., Li, S., Puzder, A., Hyldgaard, P., Langreth, D.C.: Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond. Phys. Rev. B 76, 125112 (2007)CrossRefGoogle Scholar
  34. Vanderbilt, A.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 11, 7892 (1990)CrossRefGoogle Scholar
  35. Wang, R., Zhang, D., Liu, C.: DFT study of the adsorption of 2,3,7,8-tetrachlorodibenzo-p-dioxin on pristine and Ni-doped boron nitride nanotubes. Chemosphere 168, 18–24 (2017)CrossRefGoogle Scholar
  36. Wildöer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E., Dekker, C.: Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998)CrossRefGoogle Scholar
  37. Wu, X., Yang, J., Hou, J.G., Zhu, Q.: Deformation-induced site selectivity for hydrogen adsorption on boron nitride nanotubes. Phys. Rev. B 69, 153411 (2004)CrossRefGoogle Scholar
  38. Xiang, H.J., Yang, J., Hou, J.G., Zhu, Q.: First-principles study of small-radius single-walled BN nanotubes. Phys. Rev. B 68, 035427 (2003)CrossRefGoogle Scholar
  39. Yoosefian, M., Etminan, N., Moghani, M.Z., Mirzaei, S., Abbasi, S.: The role of boron nitride nanotube as a new chemical sensor and potential reservoir for hydrogen halides environmental pollutants. Superlattices Microstruct. 98, 325–331 (2016)CrossRefGoogle Scholar
  40. Zhang, J., Loh, K.P.: Exohedral doping of single-walled boron nitride nanotube by atomic chemisorption. Appl. Phys. Lett. 87, 243105 (2005)CrossRefGoogle Scholar
  41. Zhang, J., Loh, K.P., Yang, S.W., Wu, P.: Exohedral doping of single-walled boron nitride nanotube by atomic chemisorption. Appl. Phys. Lett. 87, 243105 (2005)CrossRefGoogle Scholar
  42. Zhi, A., Bando, Y., Tang, C., Honda, S., Sato, K., Kuwahara, H., Golberg, D.: Covalent functionalization: towards soluble multiwalled boron nitride nanotubes. Angew Chem. Int. Ed. 44, 7932–7935 (2005)CrossRefGoogle Scholar
  43. Zhou, Y.G., Xiao-Dong, J., Wang, Z.G., Xiao, H.Y., Gao, F., Zu, X.T.: Electronic and magnetic properties of metal-doped BN sheet: a first-principles study. Phys. Chem. Chem. Phys. 12, 7588–7592 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de FísicaBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de CoahuilaSaltilloMexico
  3. 3.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMexico

Personalised recommendations