Advertisement

Adsorption

, Volume 24, Issue 8, pp 733–744 | Cite as

Efficient adsorption toward precious metal from aqueous solution by zeolitic imidazolate framework-8

  • Chenghong Hu
  • Weifeng Xu
  • Xiaohui Mo
  • Hua Li
  • Siman Zhou
  • Panliang Zhang
  • Kewen Tang
Article

Abstract

The recycling of precious metal ions is highly desirable to the environment and economy. In this work, zeolitic imidazolate framework-8 (ZIF-8), a porous and relatively stable adsorption material, was explored for the adsorption of Au from water. Important conditions affecting the adsorption performance were investigated, including pH, adsorption time, initial concentration, and temperature. In consequence, the ZIF-8 adsorbent exhibits excellent adsorption performance toward Au(III) with high adsorption capacity of 1192 mg g−1 at pH 2.5 and 298 K. In addition, the study of recycling use indicated that the stable adsorption performance being maintained after recycle twice. The adsorption process of Au(III) onto ZIF-8 undergoes a spontaneous endothermic process and fits well with the Freundlich isotherm model. Kinetics studies indicated that the kinetics follows pseudo-second-order model and the intraparticle diffusion is the adsorption rate-determining step. Mechanism studies suggested that the electrostatic interaction and partial reduction of Au(III) play vital roles in the adsorption process. This work introduces a promising adsorbent for Au separation due to its considerable adsorption capacity, outstanding stability, and facile regeneration.

Keywords

Precious metal recovery ZIF-8 Adsorption Mechanism Recycling 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 51874132).

References

  1. Akpomie, G.K., Abuh, M.A., Ogbu, C.I., Agulanna, A.C., Ekpe, I.O.: Adsorption of Cd(II) from solution by Nsu clay: kinetic and thermodynamic studies. J. Emerg. Trend. Eng. Appl. Sci. 3, 254–258 (2012)Google Scholar
  2. And, L.H.D., Nuzzo, R.G.: Synthesis, structure, and properties of model organic surfaces. Annu. Rev. Phys. Chem. 43, 437–463 (1992)CrossRefGoogle Scholar
  3. Biggar, J.W., Cheung, M.W.: Adsorption of picloram (4-amino-3, 5, 6-trichloropicolinic acid) on panoche, ephrata, and palouse soils: a thermodynamic approach to the adsorption mechanism 1. Soil Sci. Soc. Am. J. 37, 863–868 (1973)CrossRefGoogle Scholar
  4. Chand, R., Watari, T., Inoue, K., Kawakita, H., Luitel, H.N., Parajuli, D., Torikai, T., Yada, M.: Selective adsorption of precious metals from hydrochloric acid solutions using porous carbon prepared from barley straw and rice husk. Miner. Eng. 22, 1277–1282 (2009)CrossRefGoogle Scholar
  5. Chen, X., Lam, K.F., Mak, S.F., Yeung, K.L.: Precious metal recovery by selective adsorption using biosorbents. J. Hazard. Mater. 186, 902–910 (2011)CrossRefGoogle Scholar
  6. Chizallet, C., Lazare, S., Bazer-Bachi, D., Bonnier, F., Lecocq, V., Soyer, E., Quoineaud, A.A., Bats, N.: Catalysis of transesterification by a nonfunctionalized metal—organic framework: acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations. J. Am. Chem. Soc. 132, 12365–12377 (2010)CrossRefGoogle Scholar
  7. Cui, Y., Yue, Y., Qian, G., Chen, B.: Luminescent functional metal-organic frameworks. Chem. Rev. 112, 1126–1162 (2012)CrossRefGoogle Scholar
  8. Dobson, R.S., Burgess, J.E.: Biological treatment of precious metal refinery waste water: a review. Miner. Eng. 20, 519–532 (2007)CrossRefGoogle Scholar
  9. Dwivedi, A.D., Dubey, S.P, Hokkanen, S., Fallah, R.N., Sillanpää, M.: Recovery of gold from aqueous solutions by taurine modified cellulose: an adsorptive–reduction pathway. Chem. Eng. J. 255, 97–106 (2014)CrossRefGoogle Scholar
  10. Fleming, C.A., Mezei, A., Bourricaudy, E., Canizares, M., Ashbury, M.: Factors influencing the rate of gold cyanide leaching and adsorption on activated carbon, and their impact on the design of CIL and CIP circuits. Miner. Eng. 24, 484–494 (2011)CrossRefGoogle Scholar
  11. Ghosh, S.K.: Metal–organic frameworks (MOFs) for sensing applications. Acta. Crystallogr. 73, C1329–C1329 (2017)Google Scholar
  12. Gücüyener, C., van den Bergh, J., Gascon, J., Kapteijn, F.: Ethane/ethene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. J. Am. Chem. Soc. 132, 17704–17706 (2010)CrossRefGoogle Scholar
  13. Gwak, G., Kim, D.I., Hong, S.: New industrial application of forward osmosis (FO): precious metal recovery from printed circuit board (PCB) plant wastewater. J. Membr. Sci. 552, 234–242 (2018)CrossRefGoogle Scholar
  14. He, M., Yao, J., Liu, Q., Wang, K., Chen, F., Wang, H.: Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous Mesoporous Mater. 184, 55–60 (2014)CrossRefGoogle Scholar
  15. Ho, Y.S., McKay, G.: Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)CrossRefGoogle Scholar
  16. Horcajada, P., Gref, R., Baati, T., Allan, P., Maurin, G., Couvreur, P., Férey, G., Morris, R., Serre, C.: Metal-organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012)CrossRefGoogle Scholar
  17. Hu, Y., Kazemian, H., Rohani, S., Huang, Y., Song, Y.: In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chem. Commun. 47, 12694–12696 (2011)CrossRefGoogle Scholar
  18. Huo, S.H., Yan, X.P.: Metal-organic framework MIL-100 (Fe) for the adsorption of malachite green from aqueous solution. J. Mater. Chem. 22, 7449–7455 (2012)CrossRefGoogle Scholar
  19. Jian, M., Liu, B., Zhang, G., Liu, R., Zhang, X.: Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloid. Surf. A 465, 67–76 (2015)CrossRefGoogle Scholar
  20. Jiang, J., Yang, C., Yan, X.: Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution. ACS Appl. Mater. Inter. 5, 9837–9842 (2013)CrossRefGoogle Scholar
  21. Jiang, L., Zhang, W., Luo, C., Cheng, D., Zhu, J.: Adsorption toward trivalent rare earth element from aqueous solution by zeolitic imidazolate frameworks. Ind. Eng. Chem. Res. 55, 6365–6372 (2016)CrossRefGoogle Scholar
  22. Kavakli, C., Malci, S., Tuncel, S.A., Salish, B.: Selective adsorption and recovery of precious metal ions from geological samples by 1,5,9,13-tetrathiacyclohexadecane-3,11-diol anchored poly(p-CMS-DVB) microbeads. React. Funct. Polym. 66, 275–285 (2006)CrossRefGoogle Scholar
  23. Li, J., Sculley, J., Zhou, H.: Metal-organic frameworks for separations. Chem. Rev. 112, 869–932 (2011)CrossRefGoogle Scholar
  24. Li, J., Wu, Y., Li, Z., Zhang, B., Zhu, M., Hu, X., Zhang, M., Li, F.: Zeolitic imidazolate framework8 with high efficiency in trace arsenate adsorption and removal from water. J. Phys. Chem. C 118, 27382–27387 (2014)CrossRefGoogle Scholar
  25. Lin, S., Reddy, D.H.K., Bediako, J.K., Song, M.H., Wei, W., Kim, J.A., Yun, Y.S.: Effective adsorption of Pd(II), Pt(IV) and Au(III) by Zr(IV)-based metalorganic frameworks from strongly acidic solutions. J. Mater. Chem. A 5, 13557–13564 (2017)CrossRefGoogle Scholar
  26. Liu, H., Cai, X., Wang, Y., Wang, Y., Chen, J.: Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water Res. 45, 3499–3511 (2011)CrossRefGoogle Scholar
  27. Liu, B., Jian, M., Liu, R., Yao, J., Zhang, X.: Highly efficient removal of arsenic(III) from aqueous solution by zeolitic imidazolate frameworks with different morphology. Colloid. Surf. A 481, 358–366 (2015)CrossRefGoogle Scholar
  28. Lyu, J., Liu, H., Zeng, Z., Zhang, J., Xiao, Z., Bai, P., Guo, X.: Metal-organic framework UiO-66 as an efficient adsorbent for boron removal from aqueous solution. Ind. Eng. Chem. Res. 56, 2565–2572 (2017)CrossRefGoogle Scholar
  29. Maruyama, T., Terashima, Y., Takeda, S., Okazaki, F., Goto, M.: Selective adsorption and recovery of precious metal ions using protein-rich biomass as efficient adsorbents. Process Biochem. 49, 850–857 (2014)CrossRefGoogle Scholar
  30. Mironov, I.V., Makotchenko, E.V.: The hydrolysis of AuCl4 and the stability of aquachlorohydroxo complexes of gold (III) in aqueous solution. J. Solution Chem. 38, 725–737 (2009)CrossRefGoogle Scholar
  31. Mpinga, C.N., Bradshaw, S.M., Akdogan, G., Snyders, C.A., Eksteen, J.J.: The extraction of Pt, Pd and Au from an alkaline cyanide simulated heap leachate by granular activated carbon. Miner. Eng. 55, 11–17 (2014)CrossRefGoogle Scholar
  32. Ngah, W.S.W., Liang, K.H.: Adsorption of gold(III) ions onto chitosan and NCarboxymethyl chitosan: equilibrium studies. Ind. Eng. Res. 38, 1411–1414 (1999)CrossRefGoogle Scholar
  33. Niknam, S.M., Ghahramaninezhad, M., Eydifarash, M.: Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution. Environ. Sci. Pollut. Res. 24, 9624–9634 (2017)CrossRefGoogle Scholar
  34. Ogata, T., Nakano, Y.: Mechanisms of gold recovery from aqueous solutions using a novel tannin gel adsorbent synthesized from natural condensed tannin. Water Res. 39, 4281–4286 (2005)CrossRefGoogle Scholar
  35. Ramesh, A., Hasegawa, H., Sugimoto, W., Maki, T., Ueda, K.: Adsorption of gold (III), platinum (IV) and palladium (II) onto glycine modified crosslinked Chitosan resin. Bioresour. Technol. 99, 3801–3838 (2008)CrossRefGoogle Scholar
  36. Robb, W.: Kinetics and mechanisms of reactions of gold (III) complexes. I. The equilibrium hydrolysis of tetrachlorogold (III) in acid medium. Inorg. Chem. 6, 382–386 (1967)CrossRefGoogle Scholar
  37. Shams, K., Goodarzi, F.: Improved and selective platinum recovery from spent α-alumina supported catalysts using pretreated anionic ion exchange resin. J. Hazard. Mater. 131, 229–237 (2006)CrossRefGoogle Scholar
  38. Shen, K., Zhang, L., Chen, X., Liu, L., Zhang, D., Han, Y., Chen, J., Lomg, J., Luque, R., Li, Y., Chen, B.: Ordered macro-microporous metal-organic framework single crystals. Science 359, 206–210 (2018)CrossRefGoogle Scholar
  39. Sumida, K., Rogow, D.L., Mason, J.A., Mcdonald, T.M., Bloch, E.D., Herm, Z.R., Bae, T.H., Long, J.R.: Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2011)CrossRefGoogle Scholar
  40. Wang, M., Tan, Q., Chiang, J.F., Li, J.: Recovery of rare and precious metals from urban mines—a review. Front. Env. Sci. Eng. 11, 1–17 (2017)CrossRefGoogle Scholar
  41. Wang, Z., Zhang, B., Ye, C., Chen, L.: Recovery of Au(III) from leach solutions using thiourea functionalized zeolitic imidazolate frameworks (TU*ZIF-8). Hydrometallur 180, 262–270 (2018)CrossRefGoogle Scholar
  42. Won, S.W., Kotte, P., Wei, W., Lim, A., Yun, Y.S.: Biosorbents for recovery of precious metals. Bioresour. Technol. 160, 203–212 (2014)CrossRefGoogle Scholar
  43. Wu, C., Zhu, X., Wang, Z., Yang, J., Li, Y., Gu, J.: Specific recovery and in situ reduction of precious metal from waste to create MOF composites with immobilized nanoclusters. Ind. Eng. Chem. Res. 56, 13975–13982 (2017)CrossRefGoogle Scholar
  44. Zha, M., Liu, J., Wong, Y.L., Xu, Z.: Extraction of palladium from nuclear waste-like acidic solutions by a metal-organic framework with sulfur and alkene functions. J. Mater. Chem. A 3, 3928–3934 (2015)CrossRefGoogle Scholar
  45. Zhang, L., Xu, Z.: A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. J. Clean. Prod. 127, 19–36 (2016)CrossRefGoogle Scholar
  46. Zhang, Z., Xian, S., Xia, Q., Wang, H., Li, Z., Li, J.: Enhancement of CO2 adsorption and CO2/N2 selectivity on ZIF-8 via postsynthetic modification. AIChE J. 59, 2195–2206 (2013)CrossRefGoogle Scholar
  47. Zhang, F., Zheng, Y., Sun, Z., Ma, Y., Dong, J.: Recovery of rare and precious metals from precipitated gold solution by Na2SO3 reduction. Chin. J. Nonferrous Met. 25, 2293–2299 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringHunan Institute of Science and TechnologyYueyangChina

Personalised recommendations