Advertisement

Adsorption

, Volume 24, Issue 7, pp 691–701 | Cite as

Adsorption of propane and propylene in zeolitic imidazolate framework ZIF-8 pore: periodic SCC-DFTB method

  • Benjawan Kaewruksa
  • Viwat Vchirawongkwin
  • Vithaya RuangpornvisutiEmail author
Article

Abstract

Adsorptions of propane and propylene in the ZIF-8 pore, were studied using periodic SCC-DFTB method. Six and eleven adsorption configurations for propane and propylene molecules in the ZIF-8 pore, were respectively found. The adsorption energies based on the most stable configurations of propane (− 1.38 kcal/mol) and propylene (− 1.25 kcal/mol) in the ZIF-8 pore were obtained. Due to adsorption abilities of the ZIF-8 pore which can adsorb propane better than propylene, the ZIF-8 therefore differentiate diffusion flux of propane and propylene via hexagonal aperture. These results agree with ability of the ZIF-8 pore to separate propane/propylene mixture based on the principle of gas–solid partition. All the adsorption configurations of propane and propylene molecules and their adsorption energies are reported.

Keywords

ZIF-8 Propane Adsorption energy SSC-DFTB computations Propylene 

Notes

Acknowledgements

This Research is funded by Chulalongkorn University, Thailand. The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship is also acknowledged.

Supplementary material

10450_2018_9978_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1927 KB)

References

  1. Aradi, B., Hourahine, B., Frauenheim, T.: DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A. 111(26), 5678–5684 (2007).  https://doi.org/10.1021/jp070186p CrossRefPubMedGoogle Scholar
  2. Assfour, B., Leoni, S., Seifert, G.: Hydrogen adsorption sites in zeolite imidazolate frameworks ZIF-8 and ZIF-11. J. Phys. Chem. C. 114(31), 13381–13384 (2010).  https://doi.org/10.1021/jp101958p CrossRefGoogle Scholar
  3. Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M., Yaghi, O.M.: High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science. 319(5865), 939–943 (2008).  https://doi.org/10.1126/science.1152516 CrossRefPubMedGoogle Scholar
  4. Banerjee, R., Furukawa, H., Britt, D., Knobler, C., O’Keeffe, M., Yaghi, O.M.: Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 131(11), 3875–3877 (2009).  https://doi.org/10.1021/ja809459e CrossRefPubMedGoogle Scholar
  5. Bentley, J., Foo, G.S., Rungta, M., Sangar, N., Sievers, C., Sholl, D.S., Nair, S.: Effects of open metal site availability on adsorption capacity and olefin/paraffin selectivity in the metal–organic framework Cu3(BTC)2. Ind. Eng. Chem. Res. 55(17), 5043–5053 (2016).  https://doi.org/10.1021/acs.iecr.6b00774 CrossRefGoogle Scholar
  6. Borycz, J., Lin, L.C., Bloch, E.D., Kim, J., Dzubak, A.L., Maurice, R., Semrouni, D., Lee, K., Smit, B., Gagliardi, L.: CO2 adsorption in Fe2(dobdc): A classical force field parameterized from quantum mechanical calculations. J. Phys. Chem. C. 118(23), 12230–12240 (2014).  https://doi.org/10.1021/jp500313j CrossRefGoogle Scholar
  7. Bryant, M.R., Burrows, A.D., Kepert, C.J., Southon, P.D., Qazvini, O.T., Telfer, S.G., Richardson, C.: Mixed-component sulfone-sulfoxide tagged zinc IRMOFs: in situ ligand oxidation, carbon dioxide, and water sorption studies. Cryst. Growth Des. 17(4), 2016–2023 (2017).  https://doi.org/10.1021/acs.cgd.7b00007 CrossRefGoogle Scholar
  8. Chen, L., Yuan, S., Qian, J.F., Fan, W., He, M.Y., Chen, Q., Zhang, Z.H.: Effective adsorption separation of n-hexane/2-methylpentane in facilely synthesized zeolitic imidazolate frameworks ZIF-8 and ZIF-69. Ind. Eng. Chem. Res. 55(40), 10751–10757 (2016).  https://doi.org/10.1021/acs.iecr.6b02175 CrossRefGoogle Scholar
  9. Demir, B., Ahunbay, M.G.: Propane/propylene separation in ion-exchanged zeolite-like metal organic frameworks. Microporous Mesoporous Mater. 198, 185–193 (2014).  https://doi.org/10.1016/j.micromeso.2014.07.028 CrossRefGoogle Scholar
  10. Dixit, M., Major, D.T., Pal, S.: Hydrogen adsorption in ZIF-7: A DFT and ab-initio molecular dynamics study. Chem. Phys. Lett. 651, 178–182 (2016).  https://doi.org/10.1016/j.cplett.2016.03.030 CrossRefGoogle Scholar
  11. Ebrahimi, M., Mansournia, M.: Rapid room temperature synthesis of zeolitic imidazolate framework-7 (ZIF-7) microcrystals. Mater. Lett. 189, 243–247 (2017).  https://doi.org/10.1016/j.matlet.2016.12.025 CrossRefGoogle Scholar
  12. Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T.: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B. 58(11), 7260–7268 (1998).  https://doi.org/10.1103/PhysRevB.58.7260 CrossRefGoogle Scholar
  13. Eriksson, J., Khranovskyy, V., Söderlind, F., Käll, P.O., Yakimova, R., Spetz, A.L.: ZnO nanoparticles or ZnO films: a comparison of the gas sensing capabilities. Sens. Actuators B. 137(1), 94–102 (2009).  https://doi.org/10.1016/j.snb.2008.10.072 CrossRefGoogle Scholar
  14. Fan, Y.H., Zhang, S.W., Qin, S.B., Li, X.S., Qi, S.H.: An enhanced adsorption of organic dyes onto NH2 functionalization titanium-based metal–organic frameworks and the mechanism investigation. Microporous Mesoporous Mater. 263, 120–127 (2018).  https://doi.org/10.1016/j.micromeso.2017.12.016 CrossRefGoogle Scholar
  15. Feng, X., Wu, T., Carreon, M.A.: Synthesis of ZIF-67 and ZIF-8 crystals using DMSO (dimethyl sulfoxide) as solvent and kinetic transformation studies. J. Cryst. Growth. 455, 152–156 (2016).  https://doi.org/10.1016/j.jcrysgro.2016.10.016 CrossRefGoogle Scholar
  16. Friebe, S., Wang, N., Diestel, L., Liu, Y., Schulz, A., Mundstock, A., Caro, J.: Deuterium/hydrogen permeation through different molecular sieve membranes: ZIF, LDH, zeolite. Microporous Mesoporous Mater. (2014).  https://doi.org/10.1016/j.micromeso.2015.03.034 CrossRefGoogle Scholar
  17. Gholami, M., Yeganegi, S.: Molecular simulations of adsorption and separation of ethylene/ethane and propylene/propane mixtures on Ni2(dobdc) and Ni2(m-dobdc) metal–organic frameworks. Mol. Simul. (2017).  https://doi.org/10.1080/08927022.2017.1387916 CrossRefGoogle Scholar
  18. Go, Y., Lee, J.H., Shamsudin, I.K., Kim, J., Othman, M.R.: Microporous ZIF-7 membranes prepared by in-situ growth method for hydrogen separation. Int. J. Hydrogen Energy. 41(24), 10366–10373 (2016).  https://doi.org/10.1016/j.ijhydene.2015.09.060 CrossRefGoogle Scholar
  19. Himsl, D., Hartmann, M.: Hydrogen storage in Li-doped metal–organic frameworks. In: DGMK Tagungsbericht 2010, pp. 157–164Google Scholar
  20. Hu, M.L., Safarifard, V., Doustkhah, E., Rostamnia, S., Morsali, A., Nouruzi, N., Beheshti, S., Akhbari, K.: Taking organic reactions over metal–organic frameworks as heterogeneous catalysis. Microporous Mesoporous Mater. 256, 111–127 (2018).  https://doi.org/10.1016/j.micromeso.2017.07.057 CrossRefGoogle Scholar
  21. Huang, X.C., Lin, Y.Y., Zhang, J.P., Chen, X.M.: Ligand-directed strategy for zeolite-type metal–organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed. 45(10), 1557–1559 (2006).  https://doi.org/10.1002/anie.200503778 CrossRefGoogle Scholar
  22. Ingole, P.G., Sohail, M., Abou-Elanwar, A.M., Irshad Baig, M., Jeon, J.D., Choi, W.K., Kim, H., Lee, H.K.: Water vapor separation from flue gas using MOF incorporated thin film nanocomposite hollow fiber membranes. Chem. Eng. J. 334, 2450–2458 (2018).  https://doi.org/10.1016/j.cej.2017.11.123 CrossRefGoogle Scholar
  23. Jia, J., Wang, L., Sun, F., Jing, X., Bian, Z., Gao, L., Krishna, R., Zhu, G.: The adsorption and simulated separation of light hydrocarbons in isoreticular metal–organic frameworks based on dendritic ligands with different aliphatic side chains. Chem. Eur. J. 20(29), 9073–9080 (2014).  https://doi.org/10.1002/chem.201304962 CrossRefPubMedGoogle Scholar
  24. Jomekian, A., Behbahani, R.M., Mohammadi, T., Kargari, A.: Innovative layer by layer and continuous growth methods for synthesis of ZIF-8 membrane on porous polymeric support using poly(ether-block-amide) as structure directing agent for gas separation. Microporous Mesoporous Mater. 234, 43–54 (2016).  https://doi.org/10.1016/j.micromeso.2016.07.008 CrossRefGoogle Scholar
  25. Kolmykov, O., Commenge, J.M., Alem, H., Girot, E., Mozet, K., Medjahdi, G., Schneider, R.: Microfluidic reactors for the size-controlled synthesis of ZIF-8 crystals in aqueous phase. Mater. Des. 122, 31–41 (2017).  https://doi.org/10.1016/j.matdes.2017.03.002 CrossRefGoogle Scholar
  26. Lai, L.S., Yeong, Y.F., Lau, K.K., Shariff, A.M.: Synthesis of zeolitic imidazolate frameworks (ZIF)-8 membrane and its process optimization study in separation of CO2 from natural gas. J. Chem. Technol. Biotechnol. 92(2), 420–431 (2017).  https://doi.org/10.1002/jctb.5021 CrossRefGoogle Scholar
  27. Lee, J., Farha, O.K., Roberts, J., Scheidt, K.A., Nguyen, S.T., Hupp, J.T.: Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38(5), 1450–1459 (2009).  https://doi.org/10.1039/b807080f CrossRefPubMedGoogle Scholar
  28. Lee, K., Iii, I., Dzubak, W.C., Verma, A.L., Stoneburner, P., Lin, S.J., Howe, L.C., Bloch, J.D., Reed, E.D., Hudson, D.A., Brown, M.R., Long, C.M., Neaton, J.R., Smit, J.B., Cramer, B., Truhlar, C.J., Gagliardi, D.G.: L.: Design of a metal–organic framework with enhanced back bonding for separation of N2 and CH4. J. Am. Chem. Soc. 136(2), 698–704 (2014).  https://doi.org/10.1021/ja4102979 CrossRefPubMedGoogle Scholar
  29. Lee, M.J., Abdul Hamid, M.R., Lee, J., Kim, J.S., Lee, Y.M., Jeong, H.K.: Ultrathin zeolitic-imidazolate framework ZIF-8 membranes on polymeric hollow fibers for propylene/propane separation. J. Membr. Sci. 559, 28–34 (2018).  https://doi.org/10.1016/j.memsci.2018.04.041 CrossRefGoogle Scholar
  30. Li, K., Olson, D.H., Seidel, J., Emge, T.J., Gong, H., Zeng, H., Li, J.: Zeolitic imidazolate frameworks for kinetic separation of propane and propene. J. Am. Chem. Soc.. 131(30), 10368–10369 (2009).  https://doi.org/10.1021/ja9039983 CrossRefPubMedGoogle Scholar
  31. Li, Y., Liang, F., Bux, H., Yang, W., Caro, J.: Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J. Membr. Sci. 354(1–2), 48–54 (2010).  https://doi.org/10.1016/j.memsci.2010.02.074 CrossRefGoogle Scholar
  32. Li, B., Wei, S., Chen, L.: Molecular simulation of CO2, N2 and CH4 adsorption and separation in ZIF-78 and ZIF-79. Mol. Simul. 37(13), 1131–1142 (2011).  https://doi.org/10.1080/08927022.2011.583648 CrossRefGoogle Scholar
  33. Li, Y., Zhou, K., He, M., Yao, J.: Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption. Microporous Mesoporous Mater. 234, 287–292 (2016).  https://doi.org/10.1016/j.micromeso.2016.07.039 CrossRefGoogle Scholar
  34. Liao, P.Q., Chen, H., Zhou, D.D., Liu, S.Y., He, C.T., Rui, Z., Ji, H., Zhang, J.P., Chen, X.M.: Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gas. Energy Environ. Sci. 8(3), 1011–1016 (2015).  https://doi.org/10.1039/c4ee02717e CrossRefGoogle Scholar
  35. Liu, D., Ma, X., Xi, H., Lin, Y.S.: Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes. J. Membr. Sci. 451, 85–93 (2014).  https://doi.org/10.1016/j.memsci.2013.09.029 CrossRefGoogle Scholar
  36. Meek, S.T., Greathouse, J.A., Allendorf, M.D.: Metal–organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv. Mater. 23(2), 249–267 (2011).  https://doi.org/10.1002/adma.201002854 CrossRefPubMedGoogle Scholar
  37. Moreira, N.H., Dolgonos, G., Aradi, B., Rosa, A.L., Frauenheim, T.: Toward an accurate density-functional tight-binding description of zinc-containing compounds. J. Chem. Theory Comput. 5(3), 605–614 (2009).  https://doi.org/10.1021/ct800455a CrossRefPubMedGoogle Scholar
  38. Novaković, S.B., Bogdanović, G.A., Heering, C., Makhloufi, G., Francuski, D., Janiak, C.: Charge-density distribution and electrostatic flexibility of ZIF-8 based on high-resolution X-ray diffraction data and periodic calculations. Inorg. Chem. 54(6), 2660–2670 (2015).  https://doi.org/10.1021/ic5028256 CrossRefPubMedGoogle Scholar
  39. Nugent, P., Giannopoulou, E.G., Burd, S.D., Elemento, O., Giannopoulou, E.G., Forrest, K., Pham, T., Ma, S., Space, B., Wojtas, L., Eddaoudi, M., Zaworotko, M.J.: Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature. 495(7439), 80–84 (2013a).  https://doi.org/10.1038/nature11893 CrossRefPubMedGoogle Scholar
  40. Nugent, P.S., Rhodus, V.L., Pham, T., Forrest, K., Wojtas, L., Space, B., Zaworotko, M.J.: A robust molecular porous material with high CO2 uptake and selectivity. J. Am. Chem. Soc. 135(30), 10950–10953 (2013b).  https://doi.org/10.1021/ja4054948 CrossRefPubMedGoogle Scholar
  41. Nune, S.K., Thallapally, P.K., Dohnalkova, A., Wang, C., Liu, J., Exarhos, G.J.: Synthesis and properties of nano zeolitic imidazolate frameworks. Chem. Commun. 46(27), 4878–4880 (2010).  https://doi.org/10.1039/c002088e CrossRefGoogle Scholar
  42. Ozer, D., Köse, D.A., Sahin, O., Oztas, N.A.: Study of structural, surface and hydrogen storage properties of boric acid mediated metal (sodium)-organic frameworks. J. Mol. Struct. 1157, 159–164 (2018).  https://doi.org/10.1016/j.molstruc.2017.12.063 CrossRefGoogle Scholar
  43. Ozturk, T.N., Keskin, S.: Computational screening of porous coordination networks for adsorption and membrane-based gas separations. J. Phys. Chem. C. 118(25), 13988–13997 (2014).  https://doi.org/10.1021/jp5033977 CrossRefGoogle Scholar
  44. Pan, L., Olson, D.H., Ciemnolonski, L.R., Heady, R., Li, J.: Separation of hydrocarbons with a microporous metal–organic framework. Angew. Chem. Int. Ed. 45(4), 616–619 (2006).  https://doi.org/10.1002/anie.200503503 CrossRefGoogle Scholar
  45. Pan, Y., Li, T., Lestari, G., Lai, Z.: Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. J. Membr. Sci. 390–391, 93–98 (2012).  https://doi.org/10.1016/j.memsci.2011.11.024 CrossRefGoogle Scholar
  46. Pérez-Pellitero, J., Amrouche, H., Siperstein, F.R., Pirngruber, G., Nieto-Draghi, C., Chaplais, G., Simon-Masseron, A., Bazer-Bachi, D., Peralta, D., Bats, N.: Adsorption of CO2, CH4, and N2 on zeolitic imidazolate frameworks: experiments and simulations. Chemistry 16(5), 1560–1571 (2010).  https://doi.org/10.1002/chem.200902144 CrossRefPubMedGoogle Scholar
  47. Ramsahye, N.A., Gao, J., Jobic, H., Llewellyn, P.L., Yang, Q., Wiersum, A.D., Koza, M.M., Guillerm, V., Serre, C., Zhong, C.L., Maurin, G.: Adsorption and diffusion of light hydrocarbons in UiO-66(Zr): a combination of experimental and modeling tools. J. Phys. Chem. C. 118(47), 27470–27482 (2014).  https://doi.org/10.1021/jp509672c CrossRefGoogle Scholar
  48. Ravon, U., Domine, M.E., Gaudillère, C., Desmartin-Chomel, A., Farrusseng, D.: MOFs as acid catalysts with shape selectivity properties. New J. Chem. 32(6), 937–940 (2008).  https://doi.org/10.1039/b803953b CrossRefGoogle Scholar
  49. Reif, B., Fabisch, F., Hovestadt, M., Hartmann, M., Schwieger, W.: Synthesis of ZIF-11: effect of water residues in the solvent onto the phase transition from ZIF-11 to ZIF-7-III. Microporous Mesoporous Mater. 243, 65–68 (2017).  https://doi.org/10.1016/j.micromeso.2017.02.013 CrossRefGoogle Scholar
  50. Rowsell, J.L.C., Yaghi, O.M.: Strategies for hydrogen storage in metal–organic frameworks. Angew. Chem. Int. Ed. 44(30), 4670–4679 (2005).  https://doi.org/10.1002/anie.200462786 CrossRefGoogle Scholar
  51. Schlichte, K., Kratzke, T., Kaskel, S.: Improved synthesis, thermal stability and catalytic properties of the metal–organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater. 73(1–2), 81–88 (2004).  https://doi.org/10.1016/j.micromeso.2003.12.027 CrossRefGoogle Scholar
  52. Shimomura, S., Higuchi, M., Matsuda, R., Yoneda, K., Hijikata, Y., Kubota, Y., Mita, Y., Kim, J., Takata, M., Kitagawa, S.: Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nat. Chem. 2(8), 633–637 (2010).  https://doi.org/10.1038/nchem.684 CrossRefPubMedGoogle Scholar
  53. Sun, C.Y., Qin, C., Wang, X.L., Yang, G.S., Shao, K.Z., Lan, Y.Q., Su, Z.M., Huang, P., Wang, C.G., Wang, E.B.: Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans. 41(23), 6906–6909 (2012).  https://doi.org/10.1039/c2dt30357d CrossRefPubMedGoogle Scholar
  54. Vallet-Regí, M., Balas, F., Arcos, D.: Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. 46(40), 7548–7558 (2007).  https://doi.org/10.1002/anie.200604488 CrossRefGoogle Scholar
  55. Wang, R., Liu, X., Qi, D., Xu, Y., Zhang, L., Liu, X., Jiang, J., Dai, F., Xiao, X., Sun, D.: A Zn metal–organic framework with high stability and sorption selectivity for CO2. Inorg. Chem. 54(22), 10587–10592 (2015).  https://doi.org/10.1021/acs.inorgchem.5b01232 CrossRefPubMedGoogle Scholar
  56. Wȩgrzyniak, A., Jarczewski, S., Wȩgrzynowicz, A., Michorczyk, B., Kuśtrowski, P., Michorczyk, P.: Catalytic behavior of chromium oxide supported on nanocasting-prepared mesoporous alumina in dehydrogenation of propane. Nanomaterials 7(9) (2017).  https://doi.org/10.3390/nano7090249 CrossRefGoogle Scholar
  57. Wu, C.D., Hu, A., Zhang, L., Lin, W.: A homochiral porous metal–organic framework for highly enantioselective heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 127(25), 8940–8941 (2005).  https://doi.org/10.1021/ja052431t CrossRefPubMedGoogle Scholar
  58. Wu, H., Simmons, J.M., Liu, Y., Brown, C.M., Wang, X.S., Shengqian, M., Peterson, V.K., Southon, P.D., Kepert, C.J., Zhou, H.C., Yildirim, T., Zhou, W.: Metal–organic frameworks with exceptionally high methane uptake: Where and how is methane stored? Chemistry. 16(17), 5205–5214 (2010).  https://doi.org/10.1002/chem.200902719 CrossRefPubMedGoogle Scholar
  59. Wu, X., Liu, W., Wu, H., Zong, X., Yang, L., Wu, Y., Ren, Y., Shi, C., Wang, S., Jiang, Z.: Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance. J. Membr. Sci. 548, 309–318 (2018a).  https://doi.org/10.1016/j.memsci.2017.11.038 CrossRefGoogle Scholar
  60. Wu, Z., Huang, X., Zheng, H., Wang, P., Hai, G., Dong, W., Wang, G.: Aromatic heterocycle-grafted NH2-MIL-125(Ti) via conjugated linker with enhanced photocatalytic activity for selective oxidation of alcohols under visible light. Appl. Catal. B. 224, 479–487 (2018b).  https://doi.org/10.1016/j.apcatb.2017.10.034 CrossRefGoogle Scholar
  61. Yan, X., Yang, Y., Wang, C., Hu, X., Zhou, M., Komarneni, S.: Surfactant-assisted synthesis of ZIF-8 nanocrystals for phthalic acid adsorption. J. Sol-Gel. Sci. Technol. 80(2), 523–530 (2016).  https://doi.org/10.1007/s10971-016-4138-5 CrossRefGoogle Scholar
  62. Yang, T., Chung, T.S.: Room-temperature synthesis of ZIF-90 nanocrystals and the derived nano-composite membranes for hydrogen separation. J. Mater. Chem. A 1(19), 6081–6090 (2013).  https://doi.org/10.1039/c3ta10928c CrossRefGoogle Scholar
  63. Yao, J., Wang, H.: Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications. Chem. Soc. Rev. 43(13), 4470–4493 (2014).  https://doi.org/10.1039/c3cs60480b CrossRefPubMedGoogle Scholar
  64. Yin, H., Lee, T., Choi, J., Yip, A.C.K.: On the zeolitic imidazolate framework-8 (ZIF-8) membrane for hydrogen separation from simulated biomass-derived syngas. Microporous Mesoporous Mater. 233, 70–77 (2016).  https://doi.org/10.1016/j.micromeso.2015.10.033 CrossRefGoogle Scholar
  65. Zhang, F., Wei, Y., Wu, X., Jiang, H., Wang, W., Li, H.: Hollow zeolitic imidazolate framework nanospheres as highly efficient cooperative catalysts for [3 + 3] cycloaddition reactions. J. Am. Chem. Soc. 136(40), 13963–13966 (2014).  https://doi.org/10.1021/ja506372z CrossRefPubMedGoogle Scholar
  66. Zhang, W., Jiang, X., Wang, X., Kaneti, Y.V., Chen, Y., Liu, J., Jiang, J.S., Yamauchi, Y., Hu, M.: Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals. Angew. Chem. Int. Ed. 56(29), 8435–8440 (2017).  https://doi.org/10.1002/anie.201701252 CrossRefGoogle Scholar
  67. Zheng, B., Wang, L.L., Du, L., Huang, K.W., Du, H.: ZIF-8 gate tuning via terminal group modification: a computational study. Chem. Phys. Lett. 658, 270–275 (2016).  https://doi.org/10.1016/j.cplett.2016.06.069 CrossRefGoogle Scholar
  68. Zhuang, J., Kuo, C.H., Chou, L.Y., Liu, D.Y., Weerapana, E., Tsung, C.K.: Optimized metal–organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano. 8(3), 2812–2819 (2014).  https://doi.org/10.1021/nn406590q CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand

Personalised recommendations