Advertisement

Adsorption

, Volume 24, Issue 7, pp 647–666 | Cite as

Green cylindrical mesoporous adsorbent based on alkali-activated phosphorous slag: synthesis, dye removal, and RSM modeling

  • Ali Salehi
  • Ebrahim Najafi KaniEmail author
Article
  • 135 Downloads

Abstract

In this work, activated phosphorous slag based cylindrical adsorbent was synthesized for removal of basic violet (BV) and malachite green oxalate (MGO) dyes from aqueous solution. For this purpose, the adsorbent was prepared using a mixture of silica-fume and phosphorous slag as raw precursor and different concentration of NaOH as alkaline solution under a specified curing condition. Response surface methodology has been applied to determine the optimal adsorbent composition and experimental conditions (pH, initial concentration, adsorbent dosage, and contact time). The obtained results showed that the phosphorous slag combined with 30 wt% of silica-fume and 15 mol/L of NaOH was the optimal synthesized adsorbent with an acceptable strength of 6.25 MPa. The maximum adsorption capacity was measured as 46.58 mg/g for BV and 46.36 mg/g for MGO in the optimum condition. Specific surface area for the produced shaped adsorbent is 56.59 m2/g with average pore diameter of 20 nm which was classified as a mesoporous material. It was found from adsorption/desorption test that the overall adsorption capacity decreased about 11% after seven-cycle that result in a reliable reuse of the shaped adsorbent. The resulted high removal efficiency after several desorption cycles not only could be due to the porosity of the mesoporous adsorbent but also could be due to the presence of Si–O–Si bonds in its molecular-structure that result in higher adsorption efficiency. It was also found that silica-fume could play as a structure modifying agent that affect the molecular-structure of the adsorbent by formation of more Si–O–Si bonds due to increase in Si/Al molar ratio in the adsorbent composition.

Keywords

Mesoporous adsorbent Adsorption Alkali-activated phosphorous slag Silica-fume 

References

  1. Ackley, M.W., Rege, S.U., Saxena, H.: Application of natural zeolites in the purification and separation of gases. Microporous Mesoporous Mater. 61, 25–42 (2003),  https://doi.org/10.1016/S1387-1811(03)00353-6 CrossRefGoogle Scholar
  2. Al-Harahsheh, M.S., Al Zboon, K., Al-Makhadmeh, L., Hararah, M., Mahasneh, M.: Fly ash based geopolymer for heavy metal removal: a case study on copper removal. J. Environ. Chem. Eng. 3, 1669–1677 (2015).  https://doi.org/10.1016/j.jece.2015.06.005 CrossRefGoogle Scholar
  3. Allahverdi, A., Mahinroosta, M.: Mechanical activation of chemically activated high phosphorous slag content cement. Powder Technol. 245, 182–188 (2013).  https://doi.org/10.1016/j.powtec.2013.04.037 CrossRefGoogle Scholar
  4. Allahverdi, A., Mahinroosta, M.: A model for prediction of compressive strength of chemically activated high phosphorous slag content cement. Int. J. Civ. Eng. 12, 481–487 (2014)Google Scholar
  5. Allahverdi, A., Najafi Kani, E.: Application of FTIR-spectroscopy technique in characterizing molecular structure of natural pozzolan-based geoplymer cement. Iran. J. Mater. Sci. Eng. 6, 1–10 (2009)Google Scholar
  6. Allahverdi, A., Akhondi, M., Mahinroosta, M.: Superior sodium sulfate resistance of a chemically activated phosphorus slag-based composite cement. J. Mater. Civ. Eng. 29(3), 04016231 (2016a).  https://doi.org/10.1061/(ASCE)MT.1943-5533.0001762 CrossRefGoogle Scholar
  7. Allahverdi, A., Pilehvar, S., Mahinroosta, M.: Influence of curing conditions on the mechanical and physical properties of chemically-activated phosphorous slag cement. Powder Technol. 288, 132–139 (2016b).  https://doi.org/10.1016/j.powtec.2015.10.053.CrossRefGoogle Scholar
  8. Amaral, C.N.R., Feiteira, F.N., Cruz, R.C., Cravo, V.O., Cassella, R.J., Pacheco, W.F.: Removal of basic violet 3 dye from aqueous media using a steel industry residue as solid phase. J. Environ. Chem. Eng. 4, 4184–4193 (2016).  https://doi.org/10.1016/j.jece.2016.09.023 CrossRefGoogle Scholar
  9. Andrejkovičová, S., Sudagar, A., Rocha, J., Patinha, C., Hajjaji, W., da Silva, E.F., Velosa, A., Rocha, F.: The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers. Appl. Clay Sci. 126, 141–152 (2016).  https://doi.org/10.1016/j.clay.2016.03.009 CrossRefGoogle Scholar
  10. Balistrieri, L.S., Murray, J.W.: The surface chemistry of goethite (alpha FeOOH) in major ion seawater. Am. J. Sci. 281, 788–806 (1981).  https://doi.org/10.2475/ajs.281.6.788 CrossRefGoogle Scholar
  11. Bingol, D., Tekin, N., Alkan, M.: Brilliant Yellow dye adsorption onto sepiolite using a full factorial design. Appl Clay Sci. 50, 315–321 (2010).  https://doi.org/10.1016/j.clay.2010.08.015 CrossRefGoogle Scholar
  12. Box, G.E.P., Behnken, D.W.: American society for quality some New three level designs for the study of quantitative variables society for quality stable. Technometrics 2, 455–475 (1960)CrossRefGoogle Scholar
  13. Cheng, T.W., Chiu, J.P.: Fire-resistant geopolymer produce by granulated blast furnace slag. Miner. Eng. 16, 205–210 (2003).  https://doi.org/10.1016/S0892-6875(03)00008-6 CrossRefGoogle Scholar
  14. Cheng, T.W., Lee, M.L., Ko, M.S., Ueng, T.H., Yang, S.F.: The heavy metal adsorption characteristics on metakaolin-based geopolymer. Appl. Clay Sci. 56, 90–96 (2012).  https://doi.org/10.1016/j.clay.2011.11.027 CrossRefGoogle Scholar
  15. Ciesielczyk, F., Bartczak, P., Wieszczycka, K., Siwinska-Stefanska, K., Nowacka, M., Jesionowski, T.: Adsorption of Ni(II) from model solutions using co-precipitated inorganic oxides. Adsorption 19, 423–434 (2013)CrossRefGoogle Scholar
  16. Ciesielczyk, F., Bartczak, P., Jesionowski, T.: Removal of nickel(II) and cadmium(II) ions from aqueous solutions using an oxide adsorbent of MgO·SiO2 type. Desalin. Water Treat. (2014).  https://doi.org/10.1080/19443994.2014.925832 CrossRefGoogle Scholar
  17. Ciesielczyk, F., Bartczak, P., Jesionowski, T.: Removal of cadmium(II) and lead(II) ions from model aqueous solutions using sol–gel-derived inorganic oxide adsorbent. Adsorption 22, 445–458 (2016)CrossRefGoogle Scholar
  18. Ciesielczyk, F., Bartczak, P., Zdarta, J., Jesionowski, T.: Active MgO-SiO2 hybrid material for organic dye removal: a mechanism and interaction study of the adsorption of C.I. Acid Blue 29 and C.I. Basic Blue 9. J. Environ. Manag. 204, 123–135 (2017)CrossRefGoogle Scholar
  19. Diagboya, P.N.E., Dikio, E.D.: Silica-based mesoporous materials; emerging designer adsorbents for aqueous pollutants removal and water treatment. Microporous Mesoporous Mater. (2018). Accepted 10 Mar 2018.  https://doi.org/10.1016/j.micromeso.2018.03.008 CrossRefGoogle Scholar
  20. Dou, B., Hu, Q., Li, J., Qiao, Sh, Hao, Zh: Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry. J. Hazard. Mater. 186, 1615–1624 (2011).  https://doi.org/10.1016/j.jhazmat.2010.12.051 CrossRefPubMedGoogle Scholar
  21. Fiol, N., Villaescusa, I.: Determination of sorbent point zero charge: usefulness in sorption studies. Environ. Chem. Lett. 7, 79–84 (2009).  https://doi.org/10.1007/s10311-008-0139-0 CrossRefGoogle Scholar
  22. Ge, Y., Cui, X., Liao, C., Li, Z.: Facile fabrication of green geopolymer/alginate hybrid spheres for efficient removal of Cu(II) in water: batch and column studies. Chem. Eng. J. 311, 126–134 (2017).  https://doi.org/10.1016/j.cej.2016.11.079 CrossRefGoogle Scholar
  23. Gholami, M., Vardini, M.T., Mahdavinia, G.R.: Investigation of the effect of magnetic particles on the Crystal Violet adsorption onto a novel nanocomposite based on κ-carrageenan-g-poly(methacrylic acid). Carbohydr. Polym. 136, 772–781 (2016).  https://doi.org/10.1016/j.carbpol.2015.09.044 CrossRefPubMedGoogle Scholar
  24. Iglesias, M.J., Jimenez, A., Laggoun-Defarge, F., Suarez-Ruiz, I.: FTIR study of pure vitrains and associated coals. Energy Fuels. 9, 458–466 (1995).  https://doi.org/10.1021/ef00051a010 CrossRefGoogle Scholar
  25. Jayasantha Kumari, H., Krishnamoorthy, P., Arumugam, T.K., Radhakrishnan, S., Vasudevan, D.: An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: a novel low cost adsorbent. Int. J. Biol. Macromol. 96, 324–333 (2017).  https://doi.org/10.1016/j.ijbiomac.2016.11.077 CrossRefPubMedGoogle Scholar
  26. Kazak, O., Eker, Y.R., Akin, I., Bingol, H., Tor, A.: A novel red mud at sucrose based carbon composite: preparation, characterization and its adsorption performance toward methylene blue in aqueous solution. J. Environ. Chem. Eng. 5, 2639–2647 (2017).  https://doi.org/10.1016/j.jece.2017.05.018 CrossRefGoogle Scholar
  27. Khan, M.I., Min, T.K., Azizli, K., Sufian, S., Ullah, H., Man, Z.: Effective removal of methylene blue from water using phosphoric acid based geopolymers: synthesis, characterizations and adsorption studies. RSC Adv. 5, 61410–61420 (2015).  https://doi.org/10.1039/C5RA08255B CrossRefGoogle Scholar
  28. Lee, N.K., Khalid, H.R., Lee, H.K.: Adsorption characteristics of cesium onto mesoporous geopolymers containing nano-crystalline zeolites. Microporous Mesoporous Mater. 242, 238–244 (2017).  https://doi.org/10.1016/j.micromeso.2017.01.030 CrossRefGoogle Scholar
  29. Li, L., Wang, S., Zhu, Z.: Geopolymeric adsorbents from fly ash for dye removal from aqueous solution. J. Colloid Interface Sci. 300, 52–59 (2006).  https://doi.org/10.1016/j.jcis.2006.03.062 CrossRefPubMedGoogle Scholar
  30. Liu, J., Wang, D.: The role of phosphorus slag in steam-cured concrete. Adv. Mater. Sci. Eng. (2017).  https://doi.org/10.1155/2017/8392435 CrossRefGoogle Scholar
  31. Low, L.W., Teng, T.T., Rafatullah, M., Morad, N., Azahari, B.: Adsorption studies of methylene blue and malachite green from aqueous solutions by pretreated lignocellulosic materials. Sep. Sci. Technol. 48, 1688–1698 (2013).  https://doi.org/10.1080/01496395.2012.756912 CrossRefGoogle Scholar
  32. Maghsoodloorad, H., Allahverdi, A.: Alkali-activation kinetics of phosphorus slag cement using compressive strength data. Ceram-Silikaty 59, 250–260 (2015)Google Scholar
  33. Maghsoodloorad, H., Khalili, H., Allahverdi, A.: Alkali-activated phosphorous slag performance under different curing conditions: compressive strength, hydration products, and microstructure. J. Mater. Civ. Eng. 30, 4017253 (2018).  https://doi.org/10.1061/(ASCE)MT.1943-5533.0002101 CrossRefGoogle Scholar
  34. Mahat, M.K., Illias, R.M., Rahman, R.A., Rashid, N.A.A., Mahmood, N.A.N., Hassan, O., Aziz, S.A., Kamaruddin, K.: Production of cyclodextrin glucanotransferase (CGTase) from alkalophilic Bacillus sp. TS1-1: media optimization using experimental design. Enzyme Microb. Technol. 35, 467–473 (2004).  https://doi.org/10.1016/j.enzmictec.2004.07.008 CrossRefGoogle Scholar
  35. Mall, I.D., Srivastava, V.C., Kumar, G.V.A., Mishra, I.M.: Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloids Surf. A 278, 175–187 (2006).  https://doi.org/10.1016/j.colsurfa.2005.12.017 CrossRefGoogle Scholar
  36. Medri, V., Fabbri, S., Dedecek, J., Sobalik, Z., Tvaruzkova, Z., Vaccari, A.: Role of the morphology and the dehydroxylation of metakaolins on geopolymerization. Appl. Clay Sci. 50, 538–545 (2010).  https://doi.org/10.1016/j.clay.2010.10.010 CrossRefGoogle Scholar
  37. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, Hoboken (1991)Google Scholar
  38. Munthali, M.W., Elsheikh, M.A., Johan, E., Matsue, N.: Proton adsorption selectivity of zeolites in aqueous media: effect of Si/Al ratio of zeolites. Molecules 19, 20468–20481 (2014).  https://doi.org/10.3390/molecules191220468 CrossRefPubMedGoogle Scholar
  39. Naghsh, M., Shams, K.: Synthesis of a kaolin-based geopolymer using a novel fusion method and its application in effective water softening. Appl. Clay Sci. 146, 238–245 (2017).  https://doi.org/10.1016/j.clay.2017.06.008 CrossRefGoogle Scholar
  40. Najafi Kani, E., Allahverdi, A.: Effect of chemical composition on basic engineering properties of inorganic polymeric binder based on natural pozzolan. Ceram-Silikaty 53, 195–204 (2009a)Google Scholar
  41. Najafi Kani, E., Allahverdi, A.: Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan. J. Mater. Sci. (2009b).  https://doi.org/10.1007/s10853-009-3411-1 CrossRefGoogle Scholar
  42. Najafi Kani, E., Mehdizadeh, H.: Investigating gel molecular structure and its relation with mechanical strength in geopolymer cement based on natural pozzolan using in situ ATR-FTIR spectroscopy. J. Mater. Civ. Eng. 29, 4017078 (2017).  https://doi.org/10.1061/(ASCE)MT.1943-5533.0001917 CrossRefGoogle Scholar
  43. Najafi Kani, E., Allahverdi, A., Provis, J.L.: Efflorescence control in geopolymer binders based on natural pozzolan. Cem. Concr. Compos. J. 34, 2181–2190 (2012).  https://doi.org/10.1016/j.cemconcomp.211.07.007 CrossRefGoogle Scholar
  44. Nikolov, A., Rostovsky, I., Nugteren, H.: Geopolymer materials based on natural zeolite. Case Stud. Constr. Mater. 6, 198–205 (2017).  https://doi.org/10.1016/j.cscm.2017.03.001 CrossRefGoogle Scholar
  45. Novais, R.M., Buruberri, L.H., Seabra, M.P., Labrincha, J.A.: Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters. J. Hazard. Mater. 318, 631–640 (2016a).  https://doi.org/10.1016/j.jhazmat.2016.07.059.CrossRefPubMedGoogle Scholar
  46. Novais, R.M., Buruberri, L.H., Ascensão, G., Seabra, M.P., Labrincha, J.A.: Porous biomass fly ash-based geopolymers with tailored thermal conductivity. J. Clean Prod. 119, 99–107 (2016b).  https://doi.org/10.1016/j.jclepro.2016.01.083.CrossRefGoogle Scholar
  47. Rajabi, M., Mirza, B., Mahanpoor, K., Mirjalili, M., Najafi, F., Moradi, O., Sadegh, H., Shahryari-ghoshekandi, R., Asif, M., Tyagi, I., Agarwal, S., Gupta, V.K.: Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: determination of equilibrium and kinetics parameters. J. Ind. Eng. Chem. 34, 130–138 (2016).  https://doi.org/10.1016/j.jiec.2015.11.001 CrossRefGoogle Scholar
  48. Runtti, H., Luukkonen, T., Niskanen, M., Tuomikoski, S., Kangas, T., Tynjälä, P., Tolonen, E.T., Sarkkinen, M., Kemppainen, K., Rämö, J., Lassi, U.: Sulphate removal over barium-modified blast-furnace-slag geopolymer. J. Hazard. Mater. 317, 373–384 (2016).  https://doi.org/10.1016/j.jhazmat.2016.06.001 CrossRefPubMedGoogle Scholar
  49. Saif Ur Rehman, M., Munir, M., Ashfaq, M., Rashid, N., Nazar, M.F., Danish, M., Han, J.I.: Adsorption of Brilliant Green dye from aqueous solution onto red clay. Chem. Eng. J. 228, 54–62 (2013).  https://doi.org/10.1016/j.cej.2013.04.094 CrossRefGoogle Scholar
  50. Santos, S.C.R., Boaventura, R.A.R.: Adsorption modelling of textile dyes by sepiolite. Appl Clay Sci. 42, 137–145 (2008).  https://doi.org/10.1016/j.clay.2008.01.002 CrossRefGoogle Scholar
  51. Segurola, J., Allen, N.S., Edge, M., Mc Mahon, A.: Design of eutectic photoinitiator blends for UV/visible curable acrylated printing inks and coatings. Prog. Org. Coatings 37, 23–37 (1999).  https://doi.org/10.1016/S0300-9440(99)00052-1 CrossRefGoogle Scholar
  52. Shi, Q., Zhang, J., Zhang, C., Nie, W., Zhang, B., Zhang, H.: Adsorption of Basic Violet 14 in aqueous solutions using KMnO4-modified activated carbon. J. Colloid Interface Sci. 343, 188–193 (2010).  https://doi.org/10.1016/j.jcis.2009.08.021 CrossRefPubMedGoogle Scholar
  53. Smičiklas, I.D., Milonjić, S.K., Pfendt, P., Raičević, S.: The point of zero charge and sorption of cadmium(II) and strontium(II) ions on synthetic hydroxyapatite. Sep. Purif. Technol. 18, 185–194 (2000).  https://doi.org/10.1016/S1383-5866(99)00066-0 CrossRefGoogle Scholar
  54. Soleimani, M.A., Naghizadeh, R., Mirhabibi, A.R., Golestanifard, F.: The influence of phosphorus slag addition on microstructure and mechanical properties of metakaolin-based geopolymer pastes. Ceram-Silikaty 57, 33–38 (2013)Google Scholar
  55. Tripathi, P., Srivastava, V.C., Kumar, A.: Optimization of an azo dye batch adsorption parameters using Box-Behnken design. Desalination 249, 1273–1279 (2009).  https://doi.org/10.1016/j.desal.2009.03.010 CrossRefGoogle Scholar
  56. Van Jaarsveld, J.G.S., Van Deventer, J.S.J., Lorenzen, L.: The potential use of geopolymeric materials to immobilise toxic metals: part I. Theory and applications. Miner. Eng. 10, 659–669 (1997).  https://doi.org/10.1016/S0892-6875(97)00046-0 CrossRefGoogle Scholar
  57. Van Jaarsveld, J.G., Van Deventer, J.S., Lukey, G.: The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chem. Eng. J. 89, 63–73 (2002).  https://doi.org/10.1016/S1385-8947(02)00025-6 CrossRefGoogle Scholar
  58. Wang, H., Li, H., Yan, F.: Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids Surf. A 268, 1–6 (2005).  https://doi.org/10.1016/j.colsurfa.2005.01.016 CrossRefGoogle Scholar
  59. Wang, Z., Li, X., Liang, H., Ning, J., Zhou, Z., Li, G.: Equilibrium, kinetics and mechanism of Au3+, Pd2+ and Ag+ ions adsorption from aqueous solutions by graphene oxide functionalized persimmon tannin. Mater. Sci. Eng. C 79, 227–236 (2017).  https://doi.org/10.1016/j.msec.2017.05.038 CrossRefGoogle Scholar
  60. Xu, H., Van Deventer, J.S.J.: The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 59, 247–266 (2000).  https://doi.org/10.1016/S0301-7516(99)00074-5 CrossRefGoogle Scholar
  61. Xu, H., Allard, B., Grimvall, A.: Effects of acidification and natural organic materials on the mobility of arsenic in the environment. Water Air Soil Pollut. 57–58, 269–278 (1991).  https://doi.org/10.1007/BF00282890 CrossRefGoogle Scholar
  62. Yao, X., Zhang, Z., Zhu, H., Chen, Y.: Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry. Thermochim. Acta 493, 49–54 (2009).  https://doi.org/10.1016/j.tca.2009.04.002 CrossRefGoogle Scholar
  63. Yavuz, O., Altunkaynak, Y., Uzel, F.G.: Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res. 37, 948–952 (2003).  https://doi.org/10.1016/S0043-1354(02)00409-8 CrossRefPubMedGoogle Scholar
  64. Yu, M., Han, Y., Li, J., Wang, L.: CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors. Chem. Eng. J. 317, 493–502 (2017).  https://doi.org/10.1016/j.cej.2017.02.105 CrossRefGoogle Scholar
  65. Zhang, F., Wei, Z., Zhang, W., Cui, H.: Effective adsorption of malachite green using magnetic barium phosphate composite from aqueous solution. Spectrochim. Acta A 182, 116–122 (2017).  https://doi.org/10.1016/j.saa.2017.03.066 CrossRefGoogle Scholar
  66. Zuhua, Z., Xiao, Y., Huajun, Z., Yue, C.: Role of water in the synthesis of calcined kaolin-based geopolymer. Appl. Clay Sci. 43, 218–223 (2009).  https://doi.org/10.1016/j.clay.2008.09.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Chemical, Petroleum, and Gas EngineeringSemnan UniversitySemnanIran

Personalised recommendations