Skip to main content
Log in

An explicit multicomponent adsorption isotherm model: accounting for the size-effect for components with Langmuir adsorption behavior

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The extended Langmuir (EL) model is a popular multicomponent adsorption equilibria model, which can be based on single component Langmuir isotherms fitted on pure component data. Such explicit models are preferred over their implicit counterparts due to a lower computational requirement. An important shortcoming of the EL model is its inability to capture the adsorbate size effect occurring when the saturation capacities of pure component Langmuir isotherms are dissimilar. In contrast, this size effect is captured by the ideal adsorbed solution theory (IAST), which is centered on a set of implicit equations. In this work, we present an explicit multicomponent adsorption model for components with uneven saturation capacities obeying the Langmuir isotherm equation. This model predicts the expected change in selectivity with mixture composition, and even a selectivity reversal at high pressure when the adsorbates have significantly different molecular sizes. The model is extendable to any number of components, reduces to the Langmuir equation for pure components and to the EL equation when all saturation capacities are equal. The newly proposed model can be used to approximate the IAST and upgrade the EL model without introducing new parameters. Especially for binary mixtures, this model (Eqs. 12–14) offers a simple improvement of the EL model in predicting the experimental adsorption of light alkanes on 13X and 5A zeolites. The presented model is also applied to describe phase-changing adsorbents, in combination with the osmotic framework adsorbed solution theory (OFAST).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bousquet, D., Coudert, F.X., Fossati, A.G.J., Neimark, A.V., Fuchs, A.H., Boutin, A.: Adsorption induced transitions in soft porous crystals: An osmotic potential approach to multistability and intermediate structures. J. Chem. Phys. 138, 174706 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Couck, S., Van Assche, T.R.C., Liu, Y.Y., Baron, G.V., Van Der Voort, P., Denayer, J.F.M.: Adsorption and separation of small hydrocarbons on the flexible, vanadium-containing MOF, COMOC-2. Langmuir 31, 5063–5070 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Coudert, F.X.: The osmotic framework adsorbed solution theory: predicting mixture coadsorption in flexible nanoporous materials. Phys. Chem. Chem. Phys. 12(36), 10904 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Coudert, F.X., Jeffroy, M., Fuchs, A.H., Boutin, A., Mellot-draznieks, C.: Thermodynamics of guest-induced structural transitions in hybrid organic: inorganic frameworks. J. Am. Chem. Soc. 130(13), 14294–14302 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Coudert, F.X., Mellot-Draznieks, C., Fuchs, A.H., Boutin, A.: Prediction of breathing and gate-opening transitions upon binary mixture adsorption in metal-organic frameworks. J. Am. Chem. Soc. 131, 11329–11331 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Daems, I., Baron, G.V., Punnathanam, S., Snurr, R.Q., Denayer, J.F.M.: Molecular cage nestling in the liquid-phase adsorption of n-alkanes in 5A zeolite. J. Phys. Chem. C 111, 2191–2197 (2007)

    Article  CAS  Google Scholar 

  • Danner, R.P., Choi, E.C.F.: Mixture adsorption equilibria of ethane and ethylene on 13X molecular sieves. Ind. Eng. Chem. Res. 17, 248–253 (1978)

    CAS  Google Scholar 

  • Dávila, M., Riccardo, J.L., Ramirez-Pastor, A.J.: Exact statistical thermodynamics of alkane binary mixtures in zeolites: new interpretation of the adsorption preference reversal phenomenon from multisite-occupancy theory. Chem. Phys. Lett. 477(4–6), 402–405 (2009)

    Article  CAS  Google Scholar 

  • Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998)

    Google Scholar 

  • Dunne, L.J., Manos, G., Du, Z.: Exact statistical mechanical one-dimensional lattice model of alkane binary mixture adsorption in zeolites and comparison with Monte-Carlo simulations. Chem. Phys. Lett. 377(5–6), 551–556 (2003)

    Article  CAS  Google Scholar 

  • Dunne, L.J., Furgani, A., Jalili, S., Manos, G.: Monte-Carlo simulations of methane/carbon dioxide and ethane/carbon dioxide mixture adsorption in zeolites and comparison with matrix treatment of statistical mechanical lattice model. Chem. Phys. 359(1–3), 27–30 (2009)

    Article  CAS  Google Scholar 

  • Erto, A., Lancia, A., Musmarra, D.: A real adsorbed solution theory model for competitive multicomponent liquid adsorption onto granular activated carbon. Microporous Mesoporous Mater. 154, 45–50 (2012)

    Article  CAS  Google Scholar 

  • Frey, D.D., Rodrigues, A.E.: Explicit calculation of multicomponent equilibria for ideal adsorbed solutions. AIChE J. 40(1), 182–186 (1994)

    Article  CAS  Google Scholar 

  • García-Pérez, E., Torréns, I.M., Lago, S., Dubbeldam, D., Vlugt, T.J.H., Maesen, T.L.M., Smit, B., Krishna, R., Calero, S.: Elucidating alkane adsorption in sodium-exchanged zeolites from molecular simulations to empirical equations. Appl. Surf. Sci. 252, 716–722 (2005)

    Article  CAS  Google Scholar 

  • Golshan-Shirazi, S., Guiochon, G.: Use of the LeVan-Vermeulen isotherm model for the calculation of elution band profiles in non-linear chromatography. J. Chromatogr. A 545(1), 1–26 (1991)

    Article  CAS  Google Scholar 

  • Gomez, L.F., Zacharia, R., Bénard, P., Chahine, R.: Multicomponent adsorption of biogas compositions containing CO2, CH4 and N2 on maxsorb and Cu-BTC using extended Langmuir and Doong–Yang models. Adsorption 21(5), 433–443 (2015)

    Article  CAS  Google Scholar 

  • Krishna, R., van Baten, J.M.: Separating n-alkane mixtures by exploiting differences in the adsorption capacity within cages of CHA, AFX and ERI zeolites. Sep. Purif. Technol. 60, 315–320 (2008)

    Article  CAS  Google Scholar 

  • Krishna, R., Van Baten, J.M.: Entropy-based separation of linear chain molecules by exploiting differences in the saturation capacities in cage-type zeolites. Sep. Purif. Technol. 76(3), 325–330 (2011)

    Article  CAS  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918)

    Article  CAS  Google Scholar 

  • LeVan, M.D., Vermeulen, T.: Binary Langmuir and Freundlich isotherms for ideal adsorbed solutions. J. Phys. Chem. 85(22), 3247–3250 (1981)

    Article  CAS  Google Scholar 

  • Li, D., Zhou, Y., Shen, Y., Sun, W., Fu, Q., Yan, H., Zhang, D.: Experiment and simulation for separating CO2/N2 by dual-reflux pressure swing adsorption process. Chem. Eng. J. 297, 315–324 (2016)

    Article  CAS  Google Scholar 

  • Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T., Férey, G.: A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chemistry 10, 1373–1382 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Loughlin, K.F., Hasanain, M.A., Abdul-Rehman, H.B.: Quaternary, ternary, binary, and pure component sorption on zeolites 2: light alkanes on Linde 5A and 13X zeolites at moderate to high pressures. Ind. Eng. Chem. Res. 29, 1535–1546 (1990)

    Article  CAS  Google Scholar 

  • Matoz-Fernandez, D.A., Ramirez-Pastor, A.J.: Adsorption preference reversal phenomenon from multisite-occupancy theory for two-dimensional lattices. Chem. Phys. Lett. 610–611, 131–134 (2014)

    Article  CAS  Google Scholar 

  • Meyer, C., Hesse, D.: Modelling of coadsorption of different-sized molecules by using methods of statistical thermodynamics. Chem. Eng. Technol. 17, 119–126 (1994)

    Article  CAS  Google Scholar 

  • Mofahari, M., Salehi, S.M.: Pure and binary adsorption isotherms of ethylene and ethane on zeolite 5A. Adsorption 13, 101–110 (2013)

    Article  CAS  Google Scholar 

  • Moura, P.A.S., Bezerra, D.P., Vilarrasa-Garcia, E., Bastos-Neto, M., Azevedo, D.C.S.: Adsorption equilibria of CO2 and CH4 in cation-exchanged zeolites 13X. Adsorption 22(1), 71–80 (2016)

    Article  CAS  Google Scholar 

  • Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11(1), 121–127 (1965)

    Article  CAS  Google Scholar 

  • Nitta, T., Shigetomi, T., Kuro-Oka, M., Katayama, T.: An adsorption isotherm of multi-site occupancy model for homogeneous surface. J. Chem. Eng. Jpn. 17(1), 39–45 (1984)

    Article  CAS  Google Scholar 

  • Ritter, J.A., Bhadra, S.J., Ebnder, A.D.: On the use of the dual-process Langmuir model for correlating unary equilibria and predicting mixed-gas adsorption equilibria. Langmuir 27, 4700–4712 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption & Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  • Silva, J.A.C., Ferreira, A., Mendes, P.A.P., Cunha, A.F., Gleichmann, K., Rodrigues, A.E.: Adsorption equilibrium and dynamics of fixed bed adsorption of CH4/N2 in binderless beads of 5A zeolite. Ind. Eng. Chem. Res. 54(24), 6390–6399 (2015)

    Article  CAS  Google Scholar 

  • Swisher, J.A., Lin, L.C., Kim, J., Smit, B.: Evaluating mixture adsorption models using molecular simulation. AIChE J. 59(8), 3054–3064 (2013)

    Article  CAS  Google Scholar 

  • Tarafder, A., Mazzotti, M.: A method for deriving explicit binary isotherms obeying the ideal adsorbed solution theory. Chem. Eng. Technol. 35(1), 102–108 (2012)

    Article  CAS  Google Scholar 

  • Valenzuela, D.P., Myers, A.L., Talu, O., Zwiebel, I.: Adsorption of gas mixtures: effect of energetic heterogeneity. AIChE J. 34(3), 397–402 (1988)

    Article  CAS  Google Scholar 

  • Van Assche, T.R.C., Duerinck, T., Van Der Perre, S., Baron, G.V., Denayer, J.F.M.: Prediction of molecular separation of polar-apolar mixtures on heterogeneous metal-organic frameworks: HKUST-1, Langmuir 30, 7878–7883 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Prof. Verelst and Dr. Deridder are kindfully thanked for their fruitful mathematical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joeri F. M. Denayer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 913 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Assche, T.R.C., Baron, G.V. & Denayer, J.F.M. An explicit multicomponent adsorption isotherm model: accounting for the size-effect for components with Langmuir adsorption behavior. Adsorption 24, 517–530 (2018). https://doi.org/10.1007/s10450-018-9962-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-018-9962-1

Keywords

Navigation