Advertisement

Adsorption

pp 1–11 | Cite as

Adsorption of arsenic on iron modified attapulgite (Fe/ATP): surface complexation model and DFT studies

Article
  • 37 Downloads

Abstract

The adsorption behaviors of arsenic As(V) on the iron modified attapulgite (Fe/ATP) were studied. Two types of Fe/ATP nanoparticles, including Fe(III)/ATP and Fe(II,III)/ATP were prepared by ultrasonic co-precipitation method and characterized using SEM, XRD, XPS, FT-IR and zeta potential analyses. The adsorption isotherms of As(V) on Fe/ATP were well fitted by Freundlich model. The adsorption kinetics data were followed by the pseudo-second-order model with the pseud-second-order rate constant (k, min−1) of − 0.033 for Fe(III)/ATP and − 0.037 for Fe(II,III)/ATP, respectively. Adsorption capacities of Fe/ATP were 5–6 times higher than ATP (5.2 mg g‒1). The Fe–O(H) groups on Fe/ATP contributed to the strong interaction for As(V), confirmed with FT-IR and XPS analyses. The higher adsorption capacity of Fe(III)/ATP than that of Fe(II,III)/ATP was attributed to more surface hydroxyl groups on Fe(III)/ATP. Surface complexation models and density functional theory calculations demonstrated that As(V) sorption on Fe/ATP was by virtue of the formation of monodentate complexes.

Keywords

Arsenic Iron modified attapulgite Adsorption Surface complexation model 

Notes

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 41671311), the Project of 356 Innovative and Interdisciplinary Team of Huazhong University of Science and Technology (No. 0118261077), the Key Project in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (No. 2015BAB01B04), and Hubei Chenguang Talented Youth Development Foundation. The authors would like to thank the Analytical and Testing Center, Huazhong University of Science and Technology, China, for the kind help on sample characterization.

Supplementary material

10450_2018_9959_MOESM1_ESM.doc (548 kb)
Supplementary material 1 (DOC 548 KB)
10450_2018_9959_MOESM2_ESM.doc (51 kb)
Supplementary material 2 (DOC 51 KB)

References

  1. Angele Ngantcha-Kwimi, T., Reed, B.E.: As(V) and PO4 removal by an iron-impregnated activated carbon in a single and binary adsorbate system: experimental and surface complexation modeling results. J. Environ. Eng. 142(1), 04015046 (2016).  https://doi.org/10.1061/(asce)ee.1943-7870.0000989 CrossRefGoogle Scholar
  2. Bhattacharyya, K.G., Gupta, S.S.: Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv. Colloid Interfaces 140(2), 114–131 (2008).  https://doi.org/10.1016/j.cis.2007.12.008 CrossRefGoogle Scholar
  3. Bhaumik, M., Noubactep, C., Gupta, V.K., McCrindle, R.I., Maity, A.: Polyaniline/Fe0 composite nanofibers: an excellent adsorbent for the removal of arsenic from aqueous solutions. Chem. Eng. J. 271(1), 135–146 (2015).  https://doi.org/10.1016/j.cej.2015.02.079 CrossRefGoogle Scholar
  4. Biswas, A., Gustafsson, J.P., Neidhardt, H., Halder, D., Kundu, A.K., Chatterjee, D., Berner, Z., Bhattacharya, P.: Role of competing ions in the mobilization of arsenic in groundwater of Bengal Basin: insight from surface complexation modeling. Water Res. 55, 30–39 (2014).  https://doi.org/10.1016/j.watres.2014.02.002 CrossRefGoogle Scholar
  5. Blanchard, M., Morin, G., Lazzeri, M., Balan, E., Dabo, I.: First-principles simulation of arsenate adsorption on the (1 1¯ 2) surface of hematite. Geochim. Cosmochim. Acta 86(86), 182–195 (2012).  https://doi.org/10.1016/j.gca.2012.03.013 CrossRefGoogle Scholar
  6. Burns, R.G.: Mineral Mössbauer spectroscopy: correlations between chemical shift and quadrupole splitting parameters. Hyperfine Interact. 91(1), 739–745 (1994).  https://doi.org/10.1007/bf02064600 CrossRefGoogle Scholar
  7. Cihanoğlu, A., Gündüz, G., Dükkancı, M.: Degradation of acetic acid by heterogeneous Fenton-like oxidation over iron-containing ZSM-5 zeolites. Appl. Catal. B 165, 687–699 (2015).  https://doi.org/10.1016/j.apcatb.2014.10.073 CrossRefGoogle Scholar
  8. Dixit, S., Hering, J.G.: Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 37(18), 4182–4189 (2003).  https://doi.org/10.1021/es030309t CrossRefGoogle Scholar
  9. Elwakeel, K.Z., Guibal, E.: Arsenic(V) sorption using chitosan/Cu(OH)2 and chitosan/CuO composite sorbents. Carbohydr. Polym. 134(10), 190–204 (2015).  https://doi.org/10.1016/j.carbpol.2015.07.012 CrossRefGoogle Scholar
  10. Fan, Q., Shao, D., Lu, Y., Wu, W., Wang, X.: Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni(II) to Na–attapulgite. Chem. Eng. J. 150(1), 188–195 (2009a).  https://doi.org/10.1016/j.cej.2008.12.024 CrossRefGoogle Scholar
  11. Fan, Q., Tan, X., Li, J., Wang, X., Wu, W., Montavon, G.: Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ. Sci. Technol. 43(15), 5776–5782 (2009b).  https://doi.org/10.1021/es901241f CrossRefGoogle Scholar
  12. Fernández, A.M., Sánchez-Ledesma, D.M., Gutiérrez-Nebot, L., Martínez, J.J., Romero, C., Labajo, M., Melón, A., Barrios, I.: Comprehensive characterization of palygorskite from Torrejón el Rubio (Spain) based on experimental techniques and theoretical DFT studies In: Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT). (2014). http://documenta.ciemat.es/handle/123456789/101
  13. Giménez, J., Martínez, M., de Pablo, J., Rovira, M., Duro, L.: Arsenic sorption onto natural hematite, magnetite, and goethite. J. Hazard. Mater. 141(3), 575–580 (2007).  https://doi.org/10.1016/j.jhazmat.2006.07.020 CrossRefGoogle Scholar
  14. Goffinet, C.J., Mason, S.E.: Comparative DFT study of inner-sphere As(III) complexes on hydrated α-Fe2O3(0001) surface models. J. Environ. Monit. 14(7), 1860–1871 (2012).  https://doi.org/10.1039/c2em30355h CrossRefGoogle Scholar
  15. Goldberg, S.: Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci. Soc. Am. J. 66(2), 413–421 (2002).  https://doi.org/10.2136/sssaj2002.4130 CrossRefGoogle Scholar
  16. Gupta, V.K., Chandra, R., Tyagi, I., Verma, M.: Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications. J. Colloid Interface Sci. 478(15), 54–62 (2016).  https://doi.org/10.1016/j.jcis.2016.05.064 CrossRefGoogle Scholar
  17. Han, D.S., Abdel-Wahab, A., Batchelor, B.: Surface complexation modeling of arsenic(III) and arsenic(V) adsorption onto nanoporous titania adsorbents (NTAs). J. Colloid Interface Sci. 348(2), 591–599 (2010).  https://doi.org/10.1016/j.jcis.2010.04.088 CrossRefGoogle Scholar
  18. Hidalgo, K.T.S., Blas, R.G., Quiles, E.O.O., Fachini, E.R., Garcia, J.C., Larios, E., Zayas, B., Yacaman, M.J., Cabrera, C.R.: Highly organized nanofiber formation from zero valent iron nanoparticles after cadmium water remediation. RSC Adv. 5, 2777–2784 (2015).  https://doi.org/10.1039/C4RA13267J CrossRefGoogle Scholar
  19. Hong, P.K.A., Zeng, Y.: Degradation of pentachlorophenol by ozonation and biodegradability of intermediates. Water Res. 36(17), 4243–4254 (2002).  https://doi.org/10.1016/S0043-1354(02)00144-6 CrossRefGoogle Scholar
  20. Ismail, S.M., Labib, S., Attallah, S.S.: Preparation and characterization of nano-cadmium ferrite. J. Ceram. 2013(8), 1–8 (2013).  https://doi.org/10.1155/2013/526434 Google Scholar
  21. Jiang, L., Liu, P., Zhao, S.: Magnetic ATP/FA/Poly(AA-co-AM) ternary nanocomposite microgel as selective adsorbent for removal of heavy metals from wastewater. Colloids Surf. A 470(1), 31–38 (2015a).  https://doi.org/10.1016/j.colsurfa.2015.01.078 CrossRefGoogle Scholar
  22. Jiang, X., Peng, C., Fu, D., Chen, Z., Shen, L., Li, Q., Ouyang, T., Wang, Y.: Removal of arsenate by ferrihydrite via surface complexation and surface precipitation. Appl. Surf. Sci. 353(30), 1087–1094 (2015b).  https://doi.org/10.1016/j.apsusc.2015.06.190 CrossRefGoogle Scholar
  23. Karthikeyan, T., Rajgopal, S., Miranda, L.R.: Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J. Hazard. Mater. 124(1), 192–199 (2005).  https://doi.org/10.1016/j.jhazmat.2005.05.003 CrossRefGoogle Scholar
  24. Kumpiene, J., Ore, S., Renella, G., Mench, M., Lagerkvist, A., Maurice, C.: Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ. Pollut. 144(1), 62–69 (2006).  https://doi.org/10.1016/j.envpol.2006.01.010 CrossRefGoogle Scholar
  25. Lázár, K., Kotasthane, A.N., Fejes, P.: Oxygen transfer centers in Fe-FER and Fe-MFI zeolites: redox behavior and Debye temperature derived from in situ Mössbauer spectra. Catal. Lett. 57(4), 171–177 (1999).  https://doi.org/10.1023/a:1019020320948 CrossRefGoogle Scholar
  26. Li, Z., Jean, J.-S., Jiang, W.-T., Chang, P.-H., Chen, C.-J., Liao, L.: Removal of arsenic from water using Fe-exchanged natural zeolite. J. Hazard. Mater. 187(1), 318–323 (2011).  https://doi.org/10.1016/j.jhazmat.2011.01.030 CrossRefGoogle Scholar
  27. Liu, Y., Liu, P., Su, Z., Li, F., Wen, F.: Attapulgite–Fe3O4 magnetic nanoparticles via co-precipitation technique. Appl. Surf. Sci. 255(5), 2020–2025 (2008).  https://doi.org/10.1016/j.apsusc.2008.06.193 CrossRefGoogle Scholar
  28. Liu, Y., Wang, G., Huang, Q., Guo, L., Chen, X.: Structural and electronic properties of T graphene: a two-dimensional carbon allotrope with tetrarings. Phys. Rev. Lett. 108(22), 225505 (2012).  https://doi.org/10.1103/PhysRevLett.108.225505 CrossRefGoogle Scholar
  29. Liu, T., Xue, L., Guo, X., Huang, Y., Zheng, C.: DFT and experimental study on the mechanism of elemental mercury capture in the presence of HCl on alpha-Fe2O3(001). Environ. Sci. Technol. 50(9), 4863–4868 (2016).  https://doi.org/10.1021/acs.est.5b06340 CrossRefGoogle Scholar
  30. Luengo, C., Puccia, V., Avena, M.: Arsenate adsorption and desorption kinetics on a Fe(III)-modified montmorillonite. J. Hazard. Mater. 186(2), 1713–1719 (2011).  https://doi.org/10.1016/j.jhazmat.2010.12.074 CrossRefGoogle Scholar
  31. Luo, J., Luo, X., Crittenden, J., Qu, J., Bai, Y., Peng, Y., Li, J.: Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2). Environ. Sci. Technol. 49(18), 11115–11124 (2015).  https://doi.org/10.1021/acs.est.5b02903 CrossRefGoogle Scholar
  32. Luo, J., Luo, X., Hu, C., Crittenden, J.C., Qu, J.: Zirconia (ZrO2) embedded in carbon nanowires via electrospinning for efficient arsenic removal from water combined with DFT studies. ACS Appl. Mater. Interfaces 8(29), 18912–18921 (2016).  https://doi.org/10.1021/acsami.6b06046 CrossRefGoogle Scholar
  33. Ozola, R., Krauklis, A., Leitietis, M., Burlakovs, J., Vircava, I., Ansone-Bertina, L., Bhatnagar, A., Klavins, M.: FeOOH-modified clay sorbents for arsenic removal from aqueous solutions. Environ. Technol. Innov. (2016).  https://doi.org/10.1016/j.eti.2016.06.003 Google Scholar
  34. Pavlish, J.H., Sondreal, E.A., Mann, M.D., Olson, E.S., Galbreath, K.C., Laudal, D.L., Benson, S.A.: Status review of mercury control options for coal-fired power plants. Fuel Process. Technol. 82(2–3), 89–165 (2003).  https://doi.org/10.1016/s0378-3820(03)00059-6 CrossRefGoogle Scholar
  35. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996).  https://doi.org/10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  36. Quan, G., Zhang, J., Guo, J., Lan, Y.: Removal of Cr (VI) from aqueous solution by nanoscale zero-valent iron grafted on acid-activated attapulgite. Water Air Soil Pollut. 225(6), 1979 (2014).  https://doi.org/10.1007/s11270-014-1979-9 CrossRefGoogle Scholar
  37. Ren, X., Zhang, Z., Luo, H., Hu, B., Dang, Z., Yang, C., Li, L.: Adsorption of arsenic on modified montmorillonite. Appl. Clay Sci. 97–98, 17–23 (2014).  https://doi.org/10.1016/j.clay.2014.05.028 CrossRefGoogle Scholar
  38. Shawabkeh, R., Al-Harahsheh, A., Hami, M., Khlaifat, A.: Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater. Fuel 83(7–8), 981–985 (2004).  https://doi.org/10.1016/j.fuel.2003.10.009 CrossRefGoogle Scholar
  39. Taffarel, S.R., Rubio, J.: Removal of Mn2+ from aqueous solution by manganese oxide coated zeolite. Miner. Eng. 23(14), 1131–1138 (2010).  https://doi.org/10.1016/j.mineng.2010.07.007 CrossRefGoogle Scholar
  40. Ungureanu, G., Santos, S., Boaventura, R., Botelho, C.: Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 151(19), 326–342 (2015).  https://doi.org/10.1016/j.jenvman.2014.12.051 CrossRefGoogle Scholar
  41. Vaughan, R.L. Jr., Reed, B.E.: Modeling As(V) removal by a iron oxide impregnated activated carbon using the surface complexation approach. Water Res. 39(6), 1005–1014 (2005).  https://doi.org/10.1016/j.watres.2004.12.034 CrossRefGoogle Scholar
  42. Xie, J., Gu, X., Tong, F., Zhao, Y., Tan, Y.: Surface complexation modeling of Cr(VI) adsorption at the goethite-water interface. J. Colloid Interface Sci. 455, 55–62 (2015).  https://doi.org/10.1016/j.jcis.2015.05.041 CrossRefGoogle Scholar
  43. Yang, Y., Liu, J., Zhang, B., Liu, F.: Mechanistic studies of mercury adsorption and oxidation by oxygen over spinel-type MnFe2O4. J. Hazard. Mater. 321, 154–161 (2017).  https://doi.org/10.1016/j.jhazmat.2016.09.007 CrossRefGoogle Scholar
  44. Zhang, M., Wang, Y., Zhao, D., Pan, G.: Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles. Chin. Sci. Bull. 55(4), 365–372 (2010a).  https://doi.org/10.1007/s11434-009-0703-4 CrossRefGoogle Scholar
  45. Zhang, S., Niu, H., Cai, Y., Zhao, X., Shi, Y.: Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J. 158(3), 599–607 (2010b).  https://doi.org/10.1016/j.cej.2010.02.013 CrossRefGoogle Scholar
  46. Zhang, W.P., Xu, H.B., Wang, J., Wang, J., Wang, B.B.: Removal of As (V) from drinking water by attapulgite loaded with Fe(III) adsorbent. Adv. Mater. Res. (2013).  https://doi.org/10.4028/www.scientific.net/AMR.750-752.1452 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Environmental Science and EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations