, Volume 24, Issue 3, pp 279–291 | Cite as

Assessing the potential of nanoporous carbon adsorbents from polyethylene terephthalate (PET) to separate CO2 from flue gas

  • P. A. S. Moura
  • E. Vilarrasa-Garcia
  • D. A. S. Maia
  • M. Bastos-Neto
  • C. O. Ania
  • J. B. Parra
  • D. C. S. AzevedoEmail author


A series of nanoporous carbons was obtained by physical activation of polyethylene terephthalate and investigated for the separation of CO2 from flue gas. The prepared carbons exhibited extremely low functionalization—negligible content in oxygen and other heteroatoms—accompanied by well-developed porous networks consisting of gradually increasing surface areas and micropore volumes. Such features allowed to study the role of nanopore confinement in the separation of carbon dioxide in CO2/N2 gas mixtures. The analysis of the adsorption isotherms of individual gases and their mixtures revealed different trends for the CO2 uptake and the selectivity. Whereas CO2 uptake was larger in the carbons with higher burn-off degree, the selectivity of CO2 over N2 was favored in the carbons with a higher fraction of narrow micropores. The differential adsorption enthalpy curves are typical of highly microporous samples reaching values close to those found in zeolites for low loadings. Data also show that the choice of the best adsorbent for cyclic gas adsorption and separation processes should consider a broad context, taking into account various parameters simultaneously such as gas selectivity, working capacity, adsorption enthalpy and energy consumption in the synthesis of the adsorbent.


CO2 uptake Nanoporous carbons Selectivity Binary mixtures 



The authors would like to thank of financial support of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES, Petróleo Brasileiro S.A. – Petrobras and Agencia Estatal CSIC (Grant i-link1044). The support of Universidade de Campinas – UNICAMP in the characterization the adsorbents is also greatly appreciated.

Supplementary material

10450_2018_9943_MOESM1_ESM.docx (1006 kb)
Supplementary material 1 (DOCX 1005 KB)


  1. Ahmadpour, A., Wang, K., Do, D.D.: Comparison of models on the prediction of binary equilibrium data of activated carbons. AIChE J. 44, 740–752 (1998)CrossRefGoogle Scholar
  2. Brunauer, S., Emmett, P.H.: The use of low temperature van der waals adsorption isotherms in determining the surface areas of various adsorbents. J. Am. Chem. Soc. 59, 2682–2689 (1937)CrossRefGoogle Scholar
  3. Cai, J., Qi, J., Yang, C., Zhao, X.: Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH4 and H2 storage and CO2 capture. ACS Appl. Mater. Interfaces 6, 3703–3711 (2014)CrossRefGoogle Scholar
  4. Casco, M.E., Martínez-Escandell, M., Silvestre-Albero, J., Rodríguez-Reinoso, F.: Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure. Carbon N. Y. 67, 230–235 (2014)CrossRefGoogle Scholar
  5. Dreisbach, F., Staudt, R., Keller, J.U.: High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon. Adsorption 5, 215–227 (1999)CrossRefGoogle Scholar
  6. Dreisbach, F., Seif, R.A.H., Lösch, H.W.: Gravimetric measurement of adsorption equilibria of gas mixture CO/H2 with a magnetic suspension balance. Chem. Eng. Technol. 25, 1060–1065 (2002)CrossRefGoogle Scholar
  7. Dubinin, M.M., Radushkevich, L.V.: Equation of the characteristic curve of activated charcoal. Proc. Acad. Sci. Phys. Chem. Sect. USSR 55, 331–333 (1947)Google Scholar
  8. Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.D.: Advances in CO2 capture technology—the U.S. department of energy’s carbon sequestration program. Int. J. Greenh. Gas Control 2, 9–20 (2008)CrossRefGoogle Scholar
  9. Garcia-Cuello, V., Moreno-Piraján, J.C., Giraldo-Gutiérrez, L., Sapag, K., Zgrablich, G.: A new microcalorimeter of adsorption for the determination of differential enthalpies. Microporous Mesoporous Mater. 120, 239–245 (2009)CrossRefGoogle Scholar
  10. Garrido, J., Linares-Solano, A., Martin-Martinez, J.M., Molina-Sabio, M., Rodriguez-Reinoso, F., Torregrosa, R.: Use of N2 vs. CO2 in the characterization of activated carbons. Langmuir 3, 76–81 (1987)CrossRefGoogle Scholar
  11. Ge, C., Song, J., Qin, Z., Wang, J., Fan, W.: Polyurethane foam-based ultramicroporous carbons for CO2 capture. ACS Appl. Mater. Interfaces 8, 18849–18859 (2016)CrossRefGoogle Scholar
  12. Himeno, S., Komatsu, T., Fujita, S.: High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. J. Chem. Eng. Data 50, 369–376 (2005)CrossRefGoogle Scholar
  13. IPCC: Summary for policymakers, in: climate change 2014, mitigation of climate change. contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change (2014)Google Scholar
  14. Jagiello, J., Olivier, J.P.: 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Adsorption 19, 777–783 (2013)CrossRefGoogle Scholar
  15. Jagiello, J., Ania, C., Parra, J.B., Cook, C.: Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2. Carbon N. Y. 91, 330–337 (2015)CrossRefGoogle Scholar
  16. Kacem, M., Pellerano, M., Delebarre, A.: Pressure swing adsorption for CO2/N2 and CO2/CH4 separation: comparison between activated carbons and zeolites performances. Fuel Process. Technol. 138, 271–283 (2015)CrossRefGoogle Scholar
  17. Kim, Y.E., Lim, J.A., Jeong, S.K., Yoon, Y.I., Bae, S.T., Nam, S.C.: Comparison of carbon dioxide absorption in aqueous MEA, DEA, TEA, and AMP solutions. Bull. Korean Chem. Soc. 34, 783–787 (2013)CrossRefGoogle Scholar
  18. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)CrossRefGoogle Scholar
  19. Llewellyn, P.L., Maurin, G.: Gas adsorption microcalorimetry and modelling to characterise zeolites and related materials. Comptes Rendus Chim. 8, 283–302 (2005)CrossRefGoogle Scholar
  20. Market, R.: China activated carbon industry report, 2014–2017 (2017)Google Scholar
  21. Marsh, H., Rodríguez-Reinoso, F.: Chapter 5: Activation processes (thermal or physical). In: Activated Carbon, vol. 2, pp. 243–321 (2006a)Google Scholar
  22. Marsh, H., Rodríguez-Reinoso, F.: Chapter 4: Characterization of activated carbon. Activated Carbon (2006b)Google Scholar
  23. Parra, J., Ania, C., Arenillas, A., Pis, J.: Textural characterisation of activated carbons obtained from poly(ethylene terephthalate) by carbon dioxide activation. In: Studies in Surface Science and Catalysis. pp. 537–543. Elsevier, Amsterdam (2002)Google Scholar
  24. Parra, J.B., Ania, C.O., Arenillas, A., Rubiera, F., Palacios, J.M., Pis, J.J.: Textural development and hydrogen adsorption of carbon materials from PET waste. J. Alloys Compd. 379, 280–289 (2004a)CrossRefGoogle Scholar
  25. Parra, J.B., Ania, C.O., Arenillas, A., Rubiera, F., Pis, J.J.: High value carbon materials from PET recycling. Appl. Surf. Sci. 238, 304–308 (2004b)CrossRefGoogle Scholar
  26. Parra, J., Ania, C., Arenillas, A., Rubiera, F., Pis, J., Palacios, J.: Structural changes in polyethylene terephthalate (PET) waste materials caused by pyrolysis and CO2 activation. Adsorpt. Sci. Technol. 24, 439–449 (2006)CrossRefGoogle Scholar
  27. PlasticsEurope: Plastics—the Facts 2017 An analysis of European plastics production, demand and waste data Plastics—the Facts is an analysis of the data related to the production, demand and waste information on production and the industry’s contribution to (2017)Google Scholar
  28. Rios, R.B., Bastos-Neto, M., Amora, M.R. Jr., Torres, A.E.B., Azevedo, D.C.S., Cavalcante, C.L. Jr.: Experimental analysis of the efficiency on charge/discharge cycles in natural gas storage by adsorption. Fuel 90, 113–119 (2011)CrossRefGoogle Scholar
  29. Rouquerol, J., Rouquerol, F.: Methodology of gas adsorption. In: Adsorption by Powders and Porous Solids. pp. 57–104. Elsevier, Amsterdam (2014)CrossRefGoogle Scholar
  30. Sawant, S.Y., Somani, R.S., Sharma, S.S., Bajaj, H.C.: Solid-state dechlorination pathway for the synthesis of few layered functionalized carbon nanosheets and their greenhouse gas adsorptivity over CO and N2. Carbon N. Y. 68, 210–220 (2014)CrossRefGoogle Scholar
  31. Silvestre-Albero, A., Silvestre-Albero, J., Martínez-Escandell, M., Rodríguez-Reinoso, F.: Micro/mesoporous activated carbons derived from polyaniline: promising candidates for CO2 adsorption. Ind. Eng. Chem. Res. 53, 15398–15405 (2014)CrossRefGoogle Scholar
  32. Sips, R.: On the structure of a catalyst surface. J. Chem. Phys. 16, 490 (1948)CrossRefGoogle Scholar
  33. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)CrossRefGoogle Scholar
  34. Wang, J., Senkovska, I., Oschatz, M., Lohe, M.R., Borchardt, L., Heerwig, A., Liu, Q., Kaskel, S.: Imine-linked polymer-derived nitrogen-doped microporous carbons with excellent CO2 capture properties. ACS Appl. Mater. Interfaces 5, 3160–3167 (2013)CrossRefGoogle Scholar
  35. Wiersum, A.D., Chang, J.S., Serre, C., Llewellyn, P.L.: An adsorbent performance indicator as a first step evaluation of novel sorbents for gas separations: application to metal-organic frameworks. Langmuir 29, 3301–3309 (2013)CrossRefGoogle Scholar
  36. Wong, S., Bioletti, R.: Carbon Dioxide Separation Technologies. Alberta Research Council, Edmonton (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Grupo de Pesquisa em Separações por Adsorção, Chemical Engineering DepartmentUniversidade Federal do CearáFortalezaBrazil
  2. 2.Instituto Nacional Del Carbón, CSICOviedoSpain
  3. 3.CEMHTI CNRS UPR 3079Université OrleánsOrleansFrance

Personalised recommendations