, Volume 24, Issue 3, pp 243–248 | Cite as

Chloride adsorption on Fe- and Al-(hydr)oxide: estimation of Gibbs free energies

  • N. Y. AcelasEmail author
  • E. Flórez


In this study, we used chemical quantum methods to analysis the adsorption of chloride on Al and Fe-(hydr)oxide clusters. Inner and outer sphere complexes were the generating complexes during the adsorption process on variably charged Al- and Fe-(hydr)oxide clusters. For the chloride adsorption on Al-(hydr)oxide, the outer sphere complexes—H-bonded—were favored for all clusters, while the adsorption modes as inner sphere complexes—BB or MM—were not favored. It was found, that the H-bonded complex on neutral clusters was the most thermodynamically favored with an adsorption energy of − 63.4 kJ/mol. For iron clusters, thermodynamic favorability was observed for both outer (− 70.5 kJ/mol) and inner monodentate (− 65.8 kJ/mol) sphere complexes. These theoretical results indicated that the thermodynamic favorability of chloride adsorption on Fe and Al-(hydr)oxide was directly related to positive surface charge.


Fe-(hydr)oxide Al-(hydr)oxide Adsorption Chloride Gibbs free energy Monodentate complex Bidentate complex H-bonded complex 



The authors are grateful to Universidad de Medellín. Acelas, N.Y thanks “COLCIENCIAS” for the PhD scholarship.

Supplementary material

10450_2018_9939_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2151 KB)


  1. Acelas, N.Y., Flórez, E.: Adsorption of arsenate on Fe-(hydr)oxide. ‎J. Phys. Conf. Ser. 935, 012074 (2017a)CrossRefGoogle Scholar
  2. Acelas, N.Y., Flórez, E.: Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide. Desalination Water Treat. 60(1), 88–105 (2017b)Google Scholar
  3. Acelas, N.Y., et al.: Density functional theory characterization of phosphate and sulfate adsorption on Fe-(hydr) oxide: reactivity, pH effect, estimation of Gibbs free energies, and topological analysis of hydrogen bonds. Comput. Theor. Chem. 1005, 16–24 (2013)CrossRefGoogle Scholar
  4. Acelas, N.Y., Hadad, C., Restrepo, A., Ibarguen, C., Flórez, E.: Adsorption of nitrate and bicarbonate on Fe-(hydr)oxide. Inorg. Chem. 56(9), 5455–5464 (2017)CrossRefGoogle Scholar
  5. Adamescu, A., Hamilton, I.P., Al-Abadleh, H.A.: Density functional theory calculations on the complexation of p-arsanilic acid with hydrated iron oxide clusters: structures, reaction energies, and transition states. J. Phys. Chem. A. 118(30), 5667–5679 (2014)CrossRefGoogle Scholar
  6. Ali, I., Gupta, V.K.: Advances in water treatment by adsorption technology. Nat. Protoc. 1(6), 2661–2667 (2006)CrossRefGoogle Scholar
  7. Blaney, L.M., Cinar, S., SenGupta, A.K.: Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Res. 41(7), 1603–1613 (2007)CrossRefGoogle Scholar
  8. Borggaard, O.K.: Influence of iron oxides on the non-specific anion (chloride) adsorption by soil. J. Soil Sci. 35(1), 71–78 (1984)CrossRefGoogle Scholar
  9. Farrell, J., Chaudhary, B.K.: Understanding arsenate reaction kinetics with ferric hydroxides. ‎Environ. Sci. Technol. 47, 8342–8347 (2013)CrossRefGoogle Scholar
  10. Frisch, M., et al.: Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford, CT (2009)Google Scholar
  11. Gebhardt, H., Coleman, N.: Anion adsorption by allophanic tropical soils: I. Chloride adsorption. Soil Sci. Soc. Am. J. 38(2), 255–259 (1974)CrossRefGoogle Scholar
  12. Guo, H., ., and Zhou, X., Yang, l.: Simultaneous removal of fluoride and arsenic from aqueous solution using activated red mud. Sep. Sci. Technol. 49(15), 2412–2425 (2014)CrossRefGoogle Scholar
  13. He, G., Zhang, M., Pan, G.: Influence of pH on initial concentration effect of arsenate adsorption on TiO2 surfaces: thermodynamic, DFT, and EXAFS interpretations. ‎J. Phys. Chem. C. 113(52), 21679–21686 (2009)CrossRefGoogle Scholar
  14. Hu, Y., Cheng, H.: Water pollution during China’s industrial transition. Environ. Dev. 8, 57–73 (2013)CrossRefGoogle Scholar
  15. Kameda, T., et al.: New treatment methods for waste water containing chloride lon using magnesium–aluminum oxide. Chem. Lett. 10, 1136–1137 (2000)CrossRefGoogle Scholar
  16. Kameda, T., et al.: New treatment method for dilute hydrochloric acid using magnesium–aluminum oxide. ‎Bull. Chem. Soc. Jpn. 75(3), 595–599 (2002)CrossRefGoogle Scholar
  17. Kameda, T., et al.: New method of treating dilute mineral acids using magnesium–aluminum oxide. Water Res. 37(7), 1545–1550 (2003a)CrossRefGoogle Scholar
  18. Kameda, T., et al.: The simultaneous removal of calcium and chloride ions from calcium chloride solution using magnesium–aluminum oxide. Water Res. 37(16), 4045–4050 (2003b)CrossRefGoogle Scholar
  19. Kameda, T., et al.: The removal of chloride from solutions with various cations using magnesium–aluminum oxide. Sep. Purif Technol. 42(1), 25–29 (2005)CrossRefGoogle Scholar
  20. Kameda, T., Oba, J., Yoshioka, T.: Simultaneous removal of Cl and \({\text{SO}}_{4}^{{2 - }}\) from seawater using Mg–Al oxide: kinetics and equilibrium studies. Appl. Water Sci. 7(1), 1–8 (2014)Google Scholar
  21. Kwon, K.D., Kubicki, J.D.: Molecular orbital theory study on surface complex structures of phosphates to iron hydroxides: Calculation of vibrational frequencies and adsorption energies. Langmuir. 20(21), 9249–9254 (2004)CrossRefGoogle Scholar
  22. Lv, L., et al.: Removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anion-exchanger. J Hazard. Mater. 161(2–3), 1444–1449 (2009)CrossRefGoogle Scholar
  23. Martínez, R.J., Farrell, J.: Understanding Nitrilotris (methylenephosphonic acid) reactions with ferric hydroxide. Chemosphere. 175, 490–496 (2017)CrossRefGoogle Scholar
  24. Nriagu, J.O.: Global metal pollution: poisoning the biosphere? Environment. 32(7), 7–33 (1990)Google Scholar
  25. Panswad, T., Anan, C.: Impact of high chloride wastewater on an anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds. Water Res. 33(5), 1165–1172 (1999)CrossRefGoogle Scholar
  26. Paul, K.W., Kubicki, J.D., Sparks, D.L.: Quantum chemical calculations of sulfate adsorption at the Al-and Fe-(hydr) oxide-H2O interface estimation of Gibbs free energies. Environ. Sci. Technol. 40(24), 7717–7724 (2006)CrossRefGoogle Scholar
  27. Pérez, J.F., Hadad, C., Restrepo, A.: Structural studies of the water tetramer. Int. J. Quantum Chem. 108(10), 1653–1659 (2008)CrossRefGoogle Scholar
  28. Persson, P., Nilsson, N., Sjöberg, S.: Structure and bonding of orthophosphate ions at the iron oxide–aqueous interface. J. Colloid Interface Sci. 177(1), 263–275 (1996)CrossRefGoogle Scholar
  29. Rietra, R.P., Hiemstra, T., van Riemsdijk: W.H. Sulfate adsorption on goethite. J. Colloid Interface Sci. 218(2), 511–521 (1999)CrossRefGoogle Scholar
  30. Shah, B., Chudasama, U.: Synthesis and characterization of a novel hybrid material as amphoteric ion exchanger for simultaneous removal of cations and anions. J Hazard. Mater. 276, 138–148 (2014)CrossRefGoogle Scholar
  31. Sherman, D.M., Randall, S.R.: Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta. 67, 4223–4230 (2003)CrossRefGoogle Scholar
  32. Silva, J.C.M., dos Santos, E.C., de Oliveira, A., Heine, T., De Abreu, H.A., Duarte, H.A.: Adsorption of water, sulfates and chloride on arsenopyrite surface. Appl. Surf. Sci. 434, 389–399 (2018)CrossRefGoogle Scholar
  33. Tomohito, K., et al.: New treatment methods for waste water containing chloride ion using magnesium–aluminum oxide. Chem. Lett. 29(10), 1136–1137 (2000)CrossRefGoogle Scholar
  34. Wu, Q., et al.: Simultaneous removal of cations and anions from waste water by bifunctional mesoporous silica. Appl. Surf. Sci. 351, 155–163 (2015)CrossRefGoogle Scholar
  35. Zhu, M., et al.: Quantum chemical study of arsenic (III, V) adsorption on Mn-oxides: implications for arsenic (III) oxidation. ‎Environ. Sci. Technol. 43(17), 6655–6661 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Grupo de Investigación Mat&mpac, Facultad de Ciencias BásicasUniversidad de MedellínMedellínColombia

Personalised recommendations