, Volume 23, Issue 7–8, pp 933–944 | Cite as

Selective adsorption of carbon dioxide, methane and nitrogen using resorcinol-formaldehyde-xerogel activated carbon

  • Ahmed Awadallah-F
  • Shaheen A. Al-MuhtasebEmail author
  • Hae-Kwon Jeong


Resorcinol–formaldehyde xerogel was prepared, carbonized and activated in specific conditions to form resorcinol–formaldehyde activated carbon xerogel (RF-ACX) that was to produce microporous nanoparticles. RF-ACX was used in the adsorption of CO2, CH4, and N2 gases. Adsorption/desorption isotherms of CO2, CH4, and N2 gases onto RF-ACX adsorbent were measured gravimetrically by a magnetic suspension microbalance at five different temperatures (20, 30, 40, 50 and 60 °C) in the pressure range of 0–1 MPa. All adsorption/desorption isotherms were found to be favorable and well correlated with dual site Langmuir’s model. The adsorption capacities of the three adsorbates increased with increasing pressure or with decreasing temperature. Nonetheless, the corresponding increase of CO2 adsorption capacity was much higher than those of CH4 and N2. The fitting parameters deduced from dual site Langmuir’s model were used to provide approximate predictions of the adsorption equilibria and selectivities of the corresponding binary mixtures (CO2/CH4, CH4/N2 and CO2/N2), which relate to separation processes of high influence to various energy and environmental applications.


Adsorption Carbon dioxide Methane Nitrogen Resorcinol–formaldehyde Activated carbon xerogel 



This publication was made possible by the NPRP awards (NPRP 08-014-2-003 and NPRP-8-001-2-001) from the Qatar National Research Fund (a member of The Qatar Foundation). H.K.-J. acknowledges a partial support from the National Science Foundation (CMMI-1561897). The statements made herein are solely the responsibility of the authors. Technical support from the Department of Chemical Engineering and the Central Laboratory Unit at Qatar University is also acknowledged.

Supplementary material

10450_2017_9908_MOESM1_ESM.docx (75 kb)
Supplementary material 1 (DOCX 74 KB)


  1. Amaral-Labat, G., Szczurek, A., Fierro, V., Pizzi, A., Masson, E., Celzard, A.: “Blue glue”: a new precursor of carbon aerogels. Micropor. Mesopor. Mat. 158, 272–280 (2012)CrossRefGoogle Scholar
  2. Awadallah-F, A., Al-Muhtaseb, S.A.: Nanofeatures of resorcinol–formaldehyde carbon microspheres. Mater. Lett. 87, 31–34 (2012)CrossRefGoogle Scholar
  3. Awadallah-F, A., ElKhatat, A.M., Al-Muhtaseb, S.A.: Impact of synthesis conditions on meso- and macropore structures of resorcinol–formaldehyde xerogels. J. Mater. Sci. 46(34), 7760–7769 (2011)CrossRefGoogle Scholar
  4. Babić, B., Kokunešoski, M., Miljković, M., Prekajski, M., Matović, B., Gulicovski, J., Bučevac, D.: Synthesis and characterization of the SBA-15/carbon cryogel nanocomposites. Ceram. Int. 38(6), 4875–4883 (2012)CrossRefGoogle Scholar
  5. Carrera, S., Santiago, G., Vega, M.: Spectrophotometric determination of dithizone–mercury complex by solid phase microextraction in micropipette tip syringe packed with activated carbon xerogel. Microchem. J. 129, 133–136 (2016)CrossRefGoogle Scholar
  6. Czakkel, O., Marthi, K., Geissler, E., Lászlo, K.: Influence of drying on the morphology of resorcinol–formaldehyde-based carbon gels. Micropor. Mesopor. Mater. 86(1–3), 124–133 (2005)CrossRefGoogle Scholar
  7. Czakkel, O., Székely, E., Koczka, B., Geissler, E., László, K.: Cu-doped resorcinol–formaldehyde (RF) polymer and carbon aerogels. J. colloid interf. 337(2), 513–522 (2009)CrossRefGoogle Scholar
  8. Czakkel, O., Székely, E., Koczka, B., Geissler, E., László, K.: Drying of resorcinol–formaldehyde gels with CO2 medium Micropor. Mesopor. Mat. 148(1), 34–42 (2012)CrossRefGoogle Scholar
  9. Dubinin, M.M.: Fundamentals of the theory of adsorption in micropores of carbon adsorbents: characteristics of their adsorption properties and microporous structures. Carbon. 27(3), 457–467 (1989)CrossRefGoogle Scholar
  10. ElKhatat, A.M., Al-Muhtaseb, S.A.: Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 23(26), 2887–2903 (2011)CrossRefGoogle Scholar
  11. Futamura, R., Ozeki, S., Iiyama, T.: An X-ray investigation of the adsorption of methane, water, and their mixtures in carbon micropores. Carbon 85, 8–15 (2015)CrossRefGoogle Scholar
  12. García, S., Pis, J.J., Rubiera, F., Pevida, C.: Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture. Langmuir 29(20), 6042–6052 (2013)CrossRefGoogle Scholar
  13. Hernandez-Tamargo, C.E., Roldan, A., de Leeuw, N.H.: Density functional theory study of the zeolite-mediated tautomerization of phenol and catechol. Mol. Catal. 433, 334–345 (2017)CrossRefGoogle Scholar
  14. Jayne, D., Zhang, Y., Shaker, H., Erkey, C.: Dynamics of removal of organosulfur compounds from diesel by adsorption on carbon aerogels for fuel cell applications. Int. J. Hydr Energy. 30(11), 1287 (2005)CrossRefGoogle Scholar
  15. Jin, H., Li, J., Gao, L., Chen, F., Liu, Q.: Graphitic mesoporous carbon xerogel as an effective catalyst support for oxygen reduction reaction. Int. J. Hydr Energy. 41(21), 9204–9210 (2016)CrossRefGoogle Scholar
  16. Job, N., Pirard, R., Marien, J., Pirard, J.-P.: Porous carbon xerogels with texture tailored by pH control during sol–gel process. Carbon 42(3), 619–628 (2004)CrossRefGoogle Scholar
  17. Job, N., Heinrichs, B., Ferauche, F., Noville, F., Marien, J., Pirard, J.-P.: Hydrodechlorination of 1,2-dichloroethane on Pd–Ag catalysts supported on tailored texture carbon xerogels. Catal. Today. 102–103, 234 (2005)CrossRefGoogle Scholar
  18. Job, N., Panariello, F., Marien, J., Crine, M., Pirard, J.-P., Léonard, A.: Synthesis optimization of organic xerogels produced from convective air-drying of resorcinol–formaldehyde gels. J. Non-Cryst. Solids. 352(1), 24–34 (2006)CrossRefGoogle Scholar
  19. Kraiwattanawong, K., Sano, N., Tamon, H.: Carbon tunnels formed in carbon/carbon composite cryogels. Micropor. Mesopor. Mat. 153, 47 (2012)CrossRefGoogle Scholar
  20. Lee, H.-M., Jeong, G.H., Kim, S.-W., Kim, C.-K.: Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors. Appl. Surf. Sci. 400, 194–199 (2017)CrossRefGoogle Scholar
  21. Lin, C., Ritter, J. A.: Carbonization and activation of sol–gel derived carbon xerogels. Carbon. 38(6), 849–861 (2000)CrossRefGoogle Scholar
  22. Mathias, P.M., Ravi Kumar, R., Moyer, J.D., Schork, J.M. Jr., Srinivasan, S.R., Auvil, S.R., Talu, O.: Correlation of multicomponent gas adsorption by the dual-site Langmuir model. Application to nitrogen/oxygen adsorption on 5A-Zeolite. Ind. Eng. Chem. Res. 35, 2477–2483 (1996)CrossRefGoogle Scholar
  23. Mota, J.P.B., Rodrigues, A.E., Saatdjian, E., Tondeur, D.: Dynamics of natural gas adsorption storage systems employing activated carbon. Carbon. 35(9), 1259–1270 (1997)CrossRefGoogle Scholar
  24. Palamarchuk, M., Egorin, A., Tokar, E., Tutov, M., Avramenko, V.: Decontamination of spent ion-exchangers contaminated with cesium radionuclides using resorcinol-formaldehyde resins. J. Hazard. Mat. 321(5), 326–334 (2017)CrossRefGoogle Scholar
  25. Prasetyo, L., Razak, M.A., Do, D.D., Horikawa, T., Nicholson, D.: On the resolution of constant isosteric heat of propylene adsorption on graphite in the sub-monolayer coverage region. Colloids Surf., A. 512, 101–110 (2017)CrossRefGoogle Scholar
  26. Rey-Raap, N., Calvo, E.G., Menéndez, J.A., Arenillas, A.: Exploring the potential of resorcinol-formaldehyde xerogels as thermal insulators. Microporous Mesoporous Mater. 244, 50–54 (2017)CrossRefGoogle Scholar
  27. Ritter, J.A., Bhadra, S.J., Armin, D., Ebner, A.D.: On the use of the dual-process Langmuir model for correlating unary equilibria and predicting mixed-gas adsorption equilibria. Langmuir 27(8), 4700–4712 (2011)CrossRefGoogle Scholar
  28. Sethia, G., Somani, R.S., Bajaj, H.C.: Adsorption of carbon monoxide, methane and nitrogen on alkaline earth metal ion exchanged zeolite-X: structure, cation position and adsorption relationship. RSC Adv. 5, 12773–12781 (2015)CrossRefGoogle Scholar
  29. Song, X., Wang, L., Ma, X., Zeng, Y.: Adsorption equilibrium and thermodynamics of CO2 and CH4 on carbon molecular sieves. Appl. Surf. Sci. 396, 870–878 (2017)CrossRefGoogle Scholar
  30. Swetha, G., Gopi, T., Shekar, S.C., Ramakrishna, C., Rao, P.V.L.: Combination of adsorption followed by ozone oxidation with pressure swing adsorption technology for the removal of VOCs from contaminated air streams. Chem. Eng. Res. Des. 117, 725–732 (2017)CrossRefGoogle Scholar
  31. Talu, O., Myers, A.L.: Rigorous treatment of gas adsorption. AIChE J. 34(11), 1887–1893 (1988)CrossRefGoogle Scholar
  32. Tian, H.Y., Buckley, C.E., Paskevicius, M., Sheppard, D.A.: Acetic acid catalysed carbon xerogels derived from resorcinol-furfural for hydrogen storage. Int. J. Hydr Energy 36(1), 671–679 (2011)CrossRefGoogle Scholar
  33. Wang, N., Zhang, Q., Zhao, P., Yao, M., Komarneni, S.: Highly mesoporous LaNiO3/NiO composite with high specific surface area as a battery-type electrode. Ceram. Int. 43(7), 5687–5692 (2017)CrossRefGoogle Scholar
  34. Webb, P.A., Orr, C., Camp, R.W., Olivier, J.P., Yunes, Y.S.: Analytical methods in fine particle technology, 1st edn. Micromeritics Instrument Corporation, GA (1997)Google Scholar
  35. Zhang, Z., Yin, L.: Polyvinyl yrrolidone wrapped Sn nanoparticles/carbon xerogel composite as anode material for high performance lithium ion batteries. Electrochim. Acta. 212, 594–602 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Chemical EngineeringQatar UniversityDohaQatar
  2. 2.Artie McFerrin Department of Chemical Engineering and Department of Materials Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations