, Volume 23, Issue 6, pp 903–915 | Cite as

Calculation of adsorption properties of aluminophosphate and aluminosilicate zeolites

  • Ivan V. Grenev
  • Vladimir Yu. Gavrilov


Adsorption interaction of molecular hydrogen with atomic lattice of aluminophosphate AlPO-n and aluminosilicate zeolites H-ZSM-5 has been studied using representative structural fragments including several unit cells with the volumes ranging from 32 to 144 nm3 for different zeolites. Two original methods have been suggested for description of the sorbate–sorbent system: integral and discrete ones. The integral method uses a simplified model of the pore space, which made it possible to obtain the Henry constant dependence on the channel size in an analytic form. The discrete method takes into account the adsorption interaction of the sorbate molecule with all atoms of the structural fragment. Potentials of the adsorption interaction between the sorbate molecule and the lattice atoms (O, Si, Al, P) have been calculated. Equipotential surfaces of interaction between molecules have been also calculated. The equipotential surface with zero adsorption potential Ф 0 (r) determines the shape and parameters of the zeolite microchannels.

Open image in new window


Adsorbate–adsorbent interaction potential Aluminophosphate and aluminosilicate zeolites Shape and volume of microchannels Henry constant for H2 adsorption at 77 K 



This work was conducted within the framework of budget Project No. 0303-2016-0002 for Boreskov Institute of Catalysis.


  1. Avgul, N.N., Kiselev, A.V., Poshkus, D.P.: Adsorption of Gases and Vapors at Uniform Surfaces. Khimiya, Moscow (1975)Google Scholar
  2. Baerlocher, Ch., Meier, W.M., Olson, D.H.: Atlas of Zeolite Framework Types, 6th edn. Elsevier, Amsterdam (2007)Google Scholar
  3. Barone, G., Casella, G., Giuffrida, S., Duca, D.: H–ZSM-5 modified zeolite: quantum chemical models of acidic sites. J. Phys. Chem. C 111, 13033–13043 (2007)CrossRefGoogle Scholar
  4. Bennett, J.M., Cohen, J.P., Flanigen, E.M., Pluth, J.J., Smith, J.V.: Crystal structure of tetrapropylammonium hydroxide—aluminum phosphate number 5. ACS Sym. Ser. 218, 109–118 (1983)CrossRefGoogle Scholar
  5. Bhan, A., Delgass, W.N.: Propane aromatization over HZSM-5 and Ga/HZSM-5 catalysts. Catal. Rev. 50, 19–151 (2008)CrossRefGoogle Scholar
  6. Cejka, J., Corma, A., Zones, S. (eds.): Zeolites and Catalysis: Synthesis, Reactions and Applications, pp. 1–2. Wiley, Weinheim, (2010)CrossRefGoogle Scholar
  7. Chakraborty, A., Saha, B.B., Ng, K.C., Koyama, S., Srinivasan, K.: Theoretical insight of physical adsorption for a single component adsorbent + adsorbate system: II. The Henry region. Langmuir. 25, 7359–7367 (2009)CrossRefGoogle Scholar
  8. Chao, K., Chern, J.: Aluminium distribution in large ZSM-5 crystals. Zeolites. 8, 82–85 (1988)CrossRefGoogle Scholar
  9. Crowell, A.D.: The solid-gas interface. Flood, E.A., vol. 1, pp. 175–201. Marcel Dekker Inc, New-York (1967)Google Scholar
  10. Gavrilov, V.Yu.: Use of hydrogen physical adsorption for studying the porous structure of microporous and ultramicroporous objects. Kinet. Catal. 36, 580–583 (1995)Google Scholar
  11. Gavrilov, V.Yu.: Adsorption of Dihydrogen on Mesoporous Materials at 77 K. Kinet. Catal. 46, 603–608 (2005)CrossRefGoogle Scholar
  12. Gavrilov, V.Yu., Grenev I.V.: The adsorption of H2 on aluminophosphate and aluminosilicate zeolites: the calculation of the interaction potential, the shape and parameters of the microchannels. Modern Chemical Physics, Tuapse (2016)Google Scholar
  13. Grenev, I.V., Gavrilov, V. Yu.: Calculating henry adsorption constants of molecular hydrogen at 77 K on alumophosphate zeolites with different microchannel sizes. Rus. J. Phys. Chem. A 88, 127–133 (2014)CrossRefGoogle Scholar
  14. Grenev, I.V., Gavrilov, V.Yu.: Adsorption Interaction in the Molecular Hydrogen-Aluminophosphate AlPO-5 Zeolite System. Rus. J. Phys. Chem. A 89, 491–496 (2015a)CrossRefGoogle Scholar
  15. Grenev, I.V., Gavrilov, V.Yu.: Calculation of microchannel parameters in aluminophosphate zeolites. Microporous Mesoporous Mater. 208, 36–43 (2015b)CrossRefGoogle Scholar
  16. Grenev, I.V., Gavrilov, V.Yu.: Adsorption interaction in H2—ZSM-5 system and calculation of the zeolite microchannel parameters. Microporous Mesoporous Mater. 226, 146–152 (2016)CrossRefGoogle Scholar
  17. Hammond, K.D., Tompsett, G.A., Auerbach, S.M., Conner, W.C.: Physical adsorption analysis of intact supported MFI zeolite membranes. Langmuir 23, 8371–8384 (2007)CrossRefGoogle Scholar
  18. Karnaukhov, A.P., Fenelonov, V.B., Gavrilov, V.Yu.: Study of the Effect of Surface Chemistry and Adsorbent Texture on Adsorption Isotherms by Comparative Method. Pure Appl. Chem. 61, 1913–1920 (1989)CrossRefGoogle Scholar
  19. Kim, C.W., Heo, N.H., Seff, K.: Framework sites preferred by aluminum in zeolite ZSM-5: structure of a fully dehydrated, fully Cs+-exchanged ZSM-5 crystal (MFI, Si/Al = 24). J. Phys. Chem. C 115, 24823–24838 (2011)CrossRefGoogle Scholar
  20. Kiselev, A.V.: Investigation of the adsorption in zeolites at zero filling. Pure Appl. Chem. 52, 2161–2174 (1980)CrossRefGoogle Scholar
  21. Kiselev, A.V.: Intermolecular Interactions in Adsorption and Chromatography. Vysshaya Shkola, Moscow (1986)Google Scholar
  22. Kiselev, A.V., Lopatkin, A.A., Shulga, A.A.: Molecular statistical calculation of gas adsorption by silicalite. Zeolites 5, 261–267 (1985)CrossRefGoogle Scholar
  23. Kokotailo, G.T., Lawton, S.L., Olson, D.H., Meier, W.M.: Structure of synthetic zeolite ZSM-5. Nature 272, 437–438 (1978)CrossRefGoogle Scholar
  24. Lok, B.M., Messina, C.A., Patton, R.L., Gajek, R.T., Cannan, T.R., Flanigen, E.M.: Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. J. Am. Chem. Soc. 106, 6092–6093 (1984)CrossRefGoogle Scholar
  25. Lonsinger, S., Chakraborty, A.K., Theodorou, D.N., Bell, A.T.: The effects of local structural relaxation on aluminum siting within H-ZSM-5. Catal. Lett. 11, 209–217 (1991)CrossRefGoogle Scholar
  26. Lopatkin, A.A.: Theoretic Foundations of Physical Adsorption. MSU, Moscow (1983)Google Scholar
  27. Loughlin, K.F., Abouelnasr, D.: Adsorption Henry constants calculated from the entire isotherm. Adsorption 19, 1189–1196, (2013)CrossRefGoogle Scholar
  28. Maesen, T.: The zeolite scene—an overview. Stud. Surf. Sci. Catal. 168, 1–12 (2007)CrossRefGoogle Scholar
  29. Nagy, J.B., Bodart, P., Collette, H., El Hage-Al Asswad, J., Gabelica, Z., Aiello, R., Nastro, A., Pellegrino, C.: Aluminium distribution and cation location in various M-ZSM-5-type zeolites (M = Li, Na, K, Rb, Cs, NH4). Zeolites 8, 209–220 (1988)CrossRefGoogle Scholar
  30. Nicholson, D., Pellenq, R.J.-M: Adsorption in zeolites: intermolecular interactions and computer simulation. Adv. Colloid Interface Sci. 76–77, 179–202 (1998)CrossRefGoogle Scholar
  31. Olson, D.H., Kokotailo, G.T., Lawton, S.L., Meier, W.M.: Crystal structure and structure-related properties of ZSM-5. J. Phys. Chem. 85, 2238–2243 (1981)CrossRefGoogle Scholar
  32. Pellenq, R.J.-M., Nicholson, D.: Intermolecular potential function for the physical adsorption of rare gases in silicalite. J. Phys. Chem. 98, 13339–13349 (1994)CrossRefGoogle Scholar
  33. Peskov, M.V., Blatov, V.A., Ilyushin, G.D., Schwingenschlögl, U.: Computer-aided modeling of aluminophosphate zeolites as packings of building units. J. Phys. Chem. C. 116, 6734–6744 (2012)CrossRefGoogle Scholar
  34. Pillai, R.S., Jasra, R.V.: Computation study for water sorption in AlPO4-5 and AlPO4-11 molecular sieves. Langmuir 26, 1755–1764 (2010)CrossRefGoogle Scholar
  35. Pillai, R.S., Pinto, M.L., Pires, J., Jorge, M., Gomes, J.R.B.: Understanding gas adsorption selectivity in IRMOF-8 using molecular simulation. ACS Appl. Mater. Interfaces 7, 624–637 (2015)CrossRefGoogle Scholar
  36. Santiesteban, J.G., Degnan, T.F.: Recent Advances in the Application of Zeolites to the Production of Fuels and Petrochemicals. The 16th International Congress on Catalysis, Beijing, pp. PL03, (2016)Google Scholar
  37. Sarv, P., Fernandez, C., Amoureux, J.-P., Keskinen, K.: Distribution of tetrahedral aluminium Sites in ZSM-5 type zeolites: an 27Al (multiquantum) Magic Angle Spinning NMR Study. J. Phys. Chem. 100, 19223–19226 (1996)CrossRefGoogle Scholar
  38. Shutilov, R.A., Grenev, I.V., Kikhtyanin, O.V., Gavrilov, V.Yu.: Adsorption of molecular hydrogen on aluminophosphate zeolites at 77 K. Kinet. Catal. 53, 137–144 (2012)CrossRefGoogle Scholar
  39. Slater, J.C., Kirkwood, J.G.: The Van der Waals forces in gases. Phys. Rev. 37, 682–697 (1931)CrossRefGoogle Scholar
  40. Smith, J.V.: Topochemistry of zeolites and related materials. 1 Topology and geometry. Chem. Rev. 88, 149–182 (1988)CrossRefGoogle Scholar
  41. Stocker, M.: Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mater. 29, 3–48 (1999)CrossRefGoogle Scholar
  42. Treacy, M.M.J., Higgins, J.B. (eds.): Collection of Simulated XRD Powder Patterns for Zeolites. Elsevier, Amsterdam (2001)Google Scholar
  43. Van Koningsveld, H., Jansen, J.C., Van Bekkum, H.: The Monoclinic framework structure of zeolite H-ZSM-5: comparison with the orthorhombic framework of as-synthesized ZSM-5. Zeolites 10, 235–242 (1990)CrossRefGoogle Scholar
  44. Wakihara, T., Sato, K., Inagaki, S., Tatami, J., Komeya, K., Meguro, T., Kubota, Y.: Fabrication of fine zeolite with improved catalytic properties by bead milling and alkali treatment. ACS Appl. Mater. Interfaces 2, 2715–2718 (2010)CrossRefGoogle Scholar
  45. White, J.C., Hess, A.C.: Periodic Hartree–Fock Study of siliceous mordenite. J. Phys. Chem. 97, 6398–6404 (1993)CrossRefGoogle Scholar
  46. Wilson, S.T., Lok, B.M., Messina, C.A., Cannan, T.R., Flanigen, E.M.: Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. J. Am. Chem. Soc. 104, 1146–1147 (1982)CrossRefGoogle Scholar
  47. Xiao, F.-Sh., Meng, X. (eds.): Zeolites in Sustainable Chemistry. Synthesis, Characterization and Catalytic Application. Springer, Berlin (2016)Google Scholar
  48. Yokoi, T., Mochizuki, H., Namba, S., Kondo, J.N., Tatsumi, T.: Control of the al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties. J. Phys. Chem. C. 119, 15303–15315 (2015)CrossRefGoogle Scholar
  49. Yu, J., Xu, R.: Insight into the construction of open-framework aluminophosphates. Soc. Rev. 35, 593–604 (2006)CrossRefGoogle Scholar
  50. Zhu, H., Liub, Zh., Kongb, D., Wang, Y., Yuan, X., Xie, Z.: Synthesis of ZSM-5 with intracrystal or intercrystal mesopores by polyvinyl butyral templating method. J. Colloid. Interface Sci. 331, 432–438 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis SB RASNovosibirskRussia

Personalised recommendations