, Volume 23, Issue 4, pp 551–561 | Cite as

An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12

  • Mirosław KwiatkowskiEmail author
  • Joanna Sreńscek-Nazzal
  • Beata Michalkiewicz


The paper presents the results of research into the effects of the additional activation process of the commercial activated carbon WG-12 with KOH, ZnCl2, KOH/ZnCl2 and K2CO3 as activating agents on the formation of the porous structure and the adsorptive properties of that material. The numerical analyses were carried out on the basis of the isotherms of nitrogen adsorption with the use of the method based on the Brunauer-Emmett-Teller, the Dubinin-Radushkevich equations, the non-local and the quenched solid density functional theories as well as the LBET method with the unique fast multivariate procedure of porous structure identification and the new LBET class adsorption models. Also, the research in question yielded information regarding the usefulness of the said methods of carbonaceous adsorbent porous structure description for practical technological applications and scientific research, as well as the possibilities to make practical use of the research results.


Adsorption Porous structure Chemical activation Active carbons WG-12 NLDFT QSDFT LBET 

List of symbols


The total adsorption (mmol/g), m hA - the number of primary sites at the adsorbate pores


The volume of a space accessible for the first layer adsorption (cm3/g)


The coverage ratio of j th layer at k th type clusters


The coverage ratio of layers n >1


The relative pressure


The geometrical parameter of the microporous structure


The average number of sites provided by (n-1)-th layer for the n-th layer, n 2,k, averaged over all clusters

QA and QC

The adsorption energies at the first (Q A ) and higher layers (Q C ) (J/mol)


The gas constant



BAk, Bfk

The energy parameters



The research is led within the AGH University of Science and Technology Grant No.


  1. Bajaj, P., Dhawan, A.: PAN-based activated carbon fibres: production, characterization and applications. Indian J. Fibre Text. Res. 22, 222–235 (1997)Google Scholar
  2. Bansal, R.C., Donnet, J.B., Stoeckli, R.: Active Carbon. Marcel Dekker, New York (1988)Google Scholar
  3. Benaddi, H., Bandosz, J., Jagiello, J., Schwarz, J.A., Rouzaud, J.N., Legras, D., Béguin, F.: Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon. 38(5), 669–674 (2000)CrossRefGoogle Scholar
  4. Bhatia, S.K.: Density functional theory analysis of the influence of pore wall heterogeneity on adsorption in carbons. Langmuir. 18(18), 6845–6856 (2002)CrossRefGoogle Scholar
  5. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)CrossRefGoogle Scholar
  6. Chmiel, G., Lajtar, L., Sokołowski, S., Patrykiejew, A.: Adsorption in energetically heterogeneous slit-like pores: comparison of density functional theory and computer simulations. J. Chem. Soc. Faraday Trans. 90, 1153–1156 (1994)CrossRefGoogle Scholar
  7. Cuerda-Correa, E.M., Díaz-Díez, M.A., Macías-García, A., Gañán-Gómez, J.: Preparation of activated carbons previously treated with sulfuric acid: a study of their adsorption capacity in solution. Appl. Surf. Sci. 252(17), 6042–6045 (2006)CrossRefGoogle Scholar
  8. Do, D.D., Do, H.D.: Modeling of adsorption on nongraphitized carbon surface: GCMC simulation studies and comparison with experimental data. J. Phys. Chem. B. 110(35), 17531–17538 (2006)CrossRefGoogle Scholar
  9. Dubinin, M.M.: The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60, 235–241 (1960)CrossRefGoogle Scholar
  10. Dubinin, M.M., Polyakov, N.S., Kataeva, L.I.: Basic properties of equations for physical vapor adsorption in micropores of carbon adsorbents assuming a normal micropore distribution. Carbon. 29(4–5), 481–488 (1991)CrossRefGoogle Scholar
  11. Duda, J.T., Kwiatkowski, M., Milewska-Duda, J.: Computer modeling and analysis of heterogeneous structures of microporous carbonaceous materials. J. Mol. Model. 11(4–5), 416–430 (2005)CrossRefGoogle Scholar
  12. Foo, K.Y., Hameed, B.H.: Microwave assisted preparation of activated carbon from pomelo skin for the removal of anionic and cationic dyes. Chem. Eng. J. 173(20), 385–390 (2011)CrossRefGoogle Scholar
  13. Foo, K.Y., Hameed, B.H.: Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating. Bioresour. Technol. 111, 425–432 (2012)CrossRefGoogle Scholar
  14. Franklin, R.E.: Crystallite growth in graphitizing and nongraphitizing carbons. Proc. R Soc. A 209 196–218 (1951)CrossRefGoogle Scholar
  15. Fripiat, J.J., Gatineau, L., van Damme, H.: Multilayer physical adsorption on fractal surfaces. Langmuir. 2(5), 562–567 (1986)CrossRefGoogle Scholar
  16. Glonek, K., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J., Michalkiewicz, B.: Preparation of activated carbon from beet molasses and TiO2 as the adsorption of CO2. Acta Phys. Polonica A. 129(3), 158–161 (2016)CrossRefGoogle Scholar
  17. Grześkowiak, M., Wróbel, R.J., Moszyński, D., Mozia, S., Grzechulska-Damszel, J., Morawski, A. W., Przepiórski, J.: TiO2 supported on quartz wool for photocatalytic oxidation of hydrogen sulphide. Adsorpt. Sci. Technol. 32(10), 765–772 (2014).CrossRefGoogle Scholar
  18. ISO 15901-3.: Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption, Part 3: Analysis of Micropores by Gas Adsorption, International Organization for Standardization (2007)Google Scholar
  19. Jagiello, J., Ansón, A., Martínez, M.T.: DFT-based prediction of high-pressure H2 adsorption on porous carbons at ambient temperatures from low-pressure adsorption at 77 K. J. Phys. Chem. B. 110, 4531–4534 (2006)CrossRefGoogle Scholar
  20. Jagiełło, J., Thommes, M.M.: Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon. 42, 1227–1232 (2004)CrossRefGoogle Scholar
  21. Kante, K., Nieto-Delgado, C., Rangel-Mendez, J.R., Bandosz, T.J.: Spent coffee-based activated carbon: specific surface features and their importance for H2S separation process. J. Hazard. Mater. 201–202, 141–147 (2011)Google Scholar
  22. Kumar, A., Jena, H.M.: Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results Phys. 6, 651–658 (2016)CrossRefGoogle Scholar
  23. Kwiatkowski, M.: Computer analysis of microporous structure by employing the LBET class models with various variants of the adsorption energy distribution in comparison to the classical equations. Langmuir. 23, 2569–2581 (2007)CrossRefGoogle Scholar
  24. Kwiatkowski, M.: Computer analyses of new numerical methods for the description of adsorption process and the reliability of identification of microporous structure parameters. J. Mol. Model. 14, 183–200 (2008)CrossRefGoogle Scholar
  25. Kwiatkowski, M.: Use of fast multivariant identification of the parameters of adsorption systems to study the impact of activating agent on microporous structure formation during activation. J. Colloid Interface Sci. 340(1), 1–7 (2009)CrossRefGoogle Scholar
  26. Kwiatkowski, M., Broniek, E.: Application of the LBET class adsorption models to the analysis of microporous structure of the active carbons produced from biomass by chemical activation with the use of potassium carbonate. Colloid Surf. A. 427, 47–52 (2013)CrossRefGoogle Scholar
  27. Kwiatkowski, M., Wiśniewski, M., Rychlicki, G.: The numerical analysis of the spherical carbon adsorbents obtained from ion-exchange resins in one-step steam pyrolysis. Appl. Surf. Sci. 259, 13–20 (2012)CrossRefGoogle Scholar
  28. Kwiatkowski, M., Policicchio, A., Seredych, M., Bandosz, T.J.: Evaluation of CO2 interactions with S-doped nanoporous carbon and its composites with a reduced GO: Effect of surface features on an apparent physical adsorption mechanism. Carbon. 98, 250–258 (2016)CrossRefGoogle Scholar
  29. Kwiatkowski, M., Fierro, V., Celzard, A.: Numerical studies of the effects of process conditions on the development of the porous structure of adsorbents prepared by chemical activation of lignin with alkali hydroxides. J. Colloid Interface Sci. 486, 277–286 (2017)CrossRefGoogle Scholar
  30. Landers, J., Gor, G.Y., Neimark, A.V.: Density functional theory methods for characterization of porous materials. Colloids Surf. A. 437, 3–32 (2013)CrossRefGoogle Scholar
  31. Lastoskie, C.M., Gubbins, K.E.: Characterization of porous materials using molecular theory and simulation. Adv. Chem. Eng. 28, 203–250 (2001)CrossRefGoogle Scholar
  32. Lastoskie, C., Gubbins, K.E., Quirke, N.: Pore size distribution analysis of microporous carbons: a density functional theory approach. J. Phys. Chem. 97, 4786–4796 (1993)CrossRefGoogle Scholar
  33. Marsh, H., Rodríguez-Reinoso, F.: Activated Carbon. Elsevier, Oxford (2006)Google Scholar
  34. Młodzik, J., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J., Michalkiewicz, B.: Activated carbons from molasses as CO2 sorbents. Acta Phys. Polonica A. 129(3), 402–404 (2016)CrossRefGoogle Scholar
  35. Neimark, A.V., Ravikovitch, P.I., Vishnyakov, A.: Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores. J. Phys. 15, 347–365 (2003)Google Scholar
  36. Neimark, A.V., Lin, Y., Ravikovitch, P.I., Thommes, M.: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon. 47(7), 1617–1628 (2009)CrossRefGoogle Scholar
  37. Olivier, J.P.: Improving the models used for calculating the size distribution of micropore volume of activated carbons from adsorption data. Carbon. 36(10), 1469–1472 (1998)CrossRefGoogle Scholar
  38. Olivier, J.P., Conklin, W.B., Szombathely, M.V.: Determination of pore size distribution from density functional theory: a comparison of nitrogen and argon results. Stud. Surf. Sci. Catal. 87, 81–89 (1994)CrossRefGoogle Scholar
  39. Ravikovitch, P.I., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir. 16, 2311–2320 (2000)CrossRefGoogle Scholar
  40. Ravikovitch, P.I., Neimark, A.V.: Density functional theory model of adsorption on amorphous and microporous silica materials. Langmuir. 22(26), 11171–11179 (2006)CrossRefGoogle Scholar
  41. Salame, I.I., Bandosz, T.J.: Comparison of the surface features of two wood-based activated carbons. Ind. Eng. Chem. Res. 39(2), 301–306 (2000)CrossRefGoogle Scholar
  42. Seaton, N., Walton, J., Quirke, N.: A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon. 27(6), 853–861 (1989)CrossRefGoogle Scholar
  43. Sentorun-Shalaby, C., Ucak-Astarlioglu, M.G., Artok, L., Sarici, C.: Preparation and characterization of activated carbons by onestep steam pyrolysis/activation from apricot stones. Microporous Mesoporous Mater. 88(1–3), 126–134 (2006)CrossRefGoogle Scholar
  44. Shahsavand, A., Ahmadpour, A.: Application of optimal RBF neural networks for optimization and characterization of porous materials. Comput. Chem. Eng. 29(10), 2134–2143 (2005)CrossRefGoogle Scholar
  45. Sreńscek-Nazzal, J., Kamińska, W., Michalkiewicz, B., Koren, Z.C.: Production, characterization and methane storage potential of KOH activated carbon from sugarcane molasses. Ind. Crops. Prod. 47, 153–159 (2013)CrossRefGoogle Scholar
  46. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J., Michalkiewicz, B.: Comparison of optimized isotherm models and error functions for carbon dioxide adsorption on activated carbon. J. Chem. Eng. Data. 60, 3148–3158 (2015)CrossRefGoogle Scholar
  47. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J., Gesikiewicz-Puchalska, A., Michalkiewicz, B.: Modification of commercial activated carbons for CO2 adsorption. Acta Phy. Polonica A. 129(3), 394–401 (2016)CrossRefGoogle Scholar
  48. Sun, J.: Pore size distribution model derived from a modified DR equation and simulated pore filling for nitrogen adsorption at 77 K. Carbon. 40, 1051–1062 (2002)CrossRefGoogle Scholar
  49. Thommes, M., Smarsly, B., Groenewolt, M., Ravikovitch, P.I., Neimark, A.V.: Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir. 22(2), 756–764 (2006)CrossRefGoogle Scholar
  50. Thomson, K.T., Gubbins, K.E.: Modeling structural morphology of microporous carbons by Reverse Monte Carlo. Langmuir. 16(13), 5761–5773 (2000)CrossRefGoogle Scholar
  51. Ustinov, E.A., Do, D.D., Fenelonov, V.B.: Pore size distribution analysis of activated carbons: Application of density functional theory using nongraphitized carbon black as a reference system. Carbon. 44(4), 653–663 (2006)CrossRefGoogle Scholar
  52. Vargas, D.P., Giraldo, L., Moreno-Piraján, J.C.: Carbon dioxide and methane adsorption at high pressure on activated carbon materials. Adsorption. 19(6), 1075–1082 (2013)CrossRefGoogle Scholar
  53. Vargas, D.P., Giraldo, L., Moreno-Piraján, J.C.: Calorimetric study of the CO2 adsorption on carbon materials. J. Therm. Anal. Calorim. 117, 1299–1309 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mirosław Kwiatkowski
    • 1
    Email author
  • Joanna Sreńscek-Nazzal
    • 2
  • Beata Michalkiewicz
    • 2
  1. 1.Faculty of Energy and FuelsAGH University of Science and TechnologyKrakówPoland
  2. 2.Institute of Chemical and Environment EngineeringWest Pomeranian University of TechnologySzczecinPoland

Personalised recommendations