, Volume 23, Issue 2–3, pp 281–292 | Cite as

Bio-nano interactions: cellulase on iron oxide nanoparticle surfaces

  • Sebastian P. Schwaminger
  • Paula Fraga-García
  • Felix Selbach
  • Florian G. Hein
  • Eva C. Fuß
  • Rifki Surya
  • Hans-Christian Roth
  • Silvia A. Blank-Shim
  • Friedrich E. Wagner
  • Stefan Heissler
  • Sonja Berensmeier


Iron oxide nanoparticles (IONs) may well represent the most promising magnetic nanostructures for a plethora of applications in health, life and environmental science. IONs are already used in medicine, catalysis and downstream processing of biotechnological products. Since most particles, utilized industrially, need expensive coatings, the application of bare nanoparticles seems economically worthwhile. In this study, three different ION species were synthesized by co-precipitation methods without stabilizing agents and were thoroughly characterized with a multi-analytical approach. We emphasize the importance of the particle characterization as transitions of the ION polymorphs into each other are possible as well as merging of distinct properties. The particle sizes, which here range from 10 to 30 nm, and the magnetic properties of IONs are crucial for the further application. The adsorption behavior of the enzyme cellulase (CEL) as a model protein is investigated on the different IONs in order to gain deeper insights into bio-nano interactions to different surface sites, charges, curvatures and morphologies, as given by the three applied adsorber materials. The protein-particle interactions are driven by electrostatic and hydrophobic forces in the case of CEL. The CEL adsorption follows a Langmuir behavior and does not exceed maximum loads of around 0.6 g g−1. IR spectroscopy gives insights into the orientation of bound CEL and indicates a stronger affinity for the β-sheet tertiary structure content while a higher load can be reached with a higher α-helix content.


Iron oxide nanoparticles Protein adsorption Enzyme immobilization Electrostatic interaction Cellulase Surface charge 



The authors would like to express their gratitude to Prof. Dr. Tom Nilges for his support with powder XRD (TU München) and Dr. Peter Weidler for valuable discussions (Karlsruhe Institute of Technology, Institute of Functional Interfaces, Germany). Furthermore, we would like to express our very great appreciation to Dr. Marianne Hanzlik for help with TEM measurements and Stefan Darchinger for the performance of gel electrophoresis. Moreover, we are particularly grateful for the financial support of this work by the Federal Ministry of Education and Research (Grant number 031A173A) and the Bavarian Ministry of Economic Affairs and Media, Energy and Technology (Grant number 1340/68351/3/11).

Supplementary material

10450_2016_9849_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1753 KB)


  1. Ahn, T., Kim, J.H., Yang, H.-M., Lee, J.W., Kim, J.-D.: Formation pathways of magnetite nanoparticles by coprecipitation method. J. Phys. Chem. C. 116(10), 6069–6076 (2012)CrossRefGoogle Scholar
  2. Albornoz, C., Jacobo, S.E.: Preparation of a biocompatible magnetic film from an aqueous ferrofluid. J. Magn. Magn. Mater. 305(1), 12–15 (2006)CrossRefGoogle Scholar
  3. Baaziz, W., Pichon, B.P., Fleutot, S., Liu, Y., Lefevre, C., Greneche, J.-M., Toumi, M., Mhiri, T., Begin-Colin, S.: Magnetic iron oxide nanoparticles: reproducible tuning of the size and nanosized-dependent composition, defects, and spin canting. J. Phys. Chem. C. 118(7), 3795–3810 (2014)CrossRefGoogle Scholar
  4. Berry, F.J., Skinner, S., Thomas, M.F.: Mössbauer spectroscopic examination of a single crystal of Fe3O4. J. Phys. 10(1), 215–220 (1998)Google Scholar
  5. Bersani, D., Lottici, P.P., Montenero, A.: Micro-raman investigation of iron oxide films and powders produced by sol–gel synthesis. J. Raman Spectrosc. 30, 355–360 (1999)CrossRefGoogle Scholar
  6. Bødker, F., Mørup, S.: Size dependence of the properties of hematite nanoparticles. Europhys. Lett. 52(2), 217 (2000)CrossRefGoogle Scholar
  7. Bødker, F., Hansen, M.F., Koch, C.B., Lefmann, K., Mørup, S.: Magnetic properties of hematite nanoparticles. Phys. Rev. B. 61(10), 6826–6838 (2000)CrossRefGoogle Scholar
  8. Bornscheuer, U., Buchholz, K., Seibel, J.: Enzymatic degradation of (ligno)cellulose. Angew. Chem. Int. Ed. 53(41), 10876–10893 (2014)CrossRefGoogle Scholar
  9. Carlson, J.J., Kawatra, S.K.: Factors affecting zeta potential of iron oxides. Miner. Process. Extr. Metall. Rev. 34(5), 269–303 (2013)CrossRefGoogle Scholar
  10. Chamritski, I., Burns, G.: Infrared- and Raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. J. Phys. Chem. B. 109(11), 4965–4968 (2005)CrossRefGoogle Scholar
  11. Chernyshova, I.V., Ponnurangam, S., Somasundaran, P.: On the origin of an unusual dependence of (bio)chemical reactivity of ferric hydroxides on nanoparticle size. Phys. Chem. Chem. Phys. 12(42), 14045–14056 (2010)CrossRefGoogle Scholar
  12. Colombo, M., Carregal-Romero, S., Casula, M.F., Gutiérrez, L., Morales, M.P., Böhm, I.B., Heverhagen, J.T., Prosperi, D., Parak, W.J.: Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41(11), 4306–4334 (2012)CrossRefGoogle Scholar
  13. Cornell, R.M., Schwertmann, U.: The Iron Oxides. Wiley, Weinheim (2003)CrossRefGoogle Scholar
  14. Drenkova-Tuhtan, A., Mandel, K., Paulus, A., Meyer, C., Hutter, F., Gellermann, C., Sextl, G., Franzreb, M., Steinmetz, H.: Phosphate recovery from wastewater using engineered superparamagnetic particles modified with layered double hydroxide ion exchangers. Water Res. 47(15), 5670–5677 (2013)CrossRefGoogle Scholar
  15. Fang, M., Ström, V., Olsson, R.T., Belova, L., Rao, K.V.: Particle size and magnetic properties dependence on growth temperature for rapid mixed co-precipitated magnetite nanoparticles. Nanotechnology. 23(14), 145601 (2012)CrossRefGoogle Scholar
  16. Fraga García, P., Freiherr von Roman, M., Reinlein, S., Wolf, M., Berensmeier, S.: Impact of nanoparticle aggregation on protein recovery through a pentadentate chelate ligand on magnetic carriers. ACS Appl. Mater. Interfaces. 6(16), 13607–13616 (2014)CrossRefGoogle Scholar
  17. Fraga García, P., Brammen, M., Wolf, M., Reinlein, S., Freiherr von Roman, M., Berensmeier, S.: High-gradient magnetic separation for technical scale protein recovery using low cost magnetic nanoparticles. Sep. Purif. Technol. 150, 29–36 (2015)CrossRefGoogle Scholar
  18. Franzreb, M., Siemann-Herzberg, M., Hobley, T.J., Thomas, Ow en R, T.: Protein purification using magnetic adsorbent particles. Appl. Microbiol. Biotechnol. 70(5), 505–516 (2006)CrossRefGoogle Scholar
  19. Gdula, K., Dąbrowski, A., Skwarek, E.: Synthesis, surface characterization and electrokinetic properties of colloidal silica nanoparticles with magnetic core. Adsorption 22(4–6), 681–688 (2016)CrossRefGoogle Scholar
  20. Goss, C.J.: Saturation magnetisation, coercivity and lattice parameter changes in the system Fe3O4-γFe2O3, and their relationship to structure. Phys. Chem. Miner. 16(2) (1988)Google Scholar
  21. Gotić, M., Koščec, G., Musić, S.: Study of the reduction and reoxidation of substoichiometric magnetite. J. Mol. Struct. 924–926, 347–354 (2009)Google Scholar
  22. Graham, D.L., Ferreira, H.A., Freitas, P.P.: Magnetoresistive-based biosensors and biochips. Trends Biotechnol. 22(9), 455–462 (2004)CrossRefGoogle Scholar
  23. Illés, E., Tombácz, E.: The role of variable surface charge and surface complexation in the adsorption of humic acid on magnetite. Colloids Surf. A 230(1–3), 99–109 (2003)CrossRefGoogle Scholar
  24. Jesionowski, T., Zdarta, J., Krajewska, B.: Enzyme immobilization by adsorption: a review. Adsorption 20(5–6), 801–821 (2014)CrossRefGoogle Scholar
  25. Jordan, J., Kumar, C.S., Theegala, C.: Preparation and characterization of cellulase-bound magnetite nanoparticles. J. Mol. Catal. B 68(2), 139–146 (2011)CrossRefGoogle Scholar
  26. Jubb, A.M., Allen, H.C.: Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl. Mater. Interfaces. 2(10), 2804–2812 (2010)CrossRefGoogle Scholar
  27. Khajehpour, M., Dashnau, J.L., Vanderkooi, J.M.: Infrared spectroscopy used to evaluate glycosylation of proteins. Anal. Biochem. 348(1), 40–48 (2006)CrossRefGoogle Scholar
  28. Khalafalla, S., Reimers, G.W.: Magnetofluids and their manufacture. USA US3764540 A, 09.10.1973Google Scholar
  29. Kim, E.H., Lee, H.S., Kwak, B.K., Kim, B.-K.: Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 289, 328–330 (2005)CrossRefGoogle Scholar
  30. Kim, W., Suh, C.-Y., Cho, S.-W., Roh, K.-M., Kwon, H., Song, K., Shon, I.-J.: A new method for the identification and quantification of magnetite-maghemite mixture using conventional X-ray diffraction technique. Talanta 94, 348–352 (2012)CrossRefGoogle Scholar
  31. Kimata, M., Nakagawa, D., Hasegawa, M.: Preparation of monodisperse magnetic particles by hydrolysis of iron alkoxide. Powder Technol. 132(2–3), 112–118 (2003)CrossRefGoogle Scholar
  32. Kolhatkar, A.G., Jamison, A.C., Litvinov, D., Willson, R.C., Lee, T.R.: Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 14(8), 15977–16009 (2013)CrossRefGoogle Scholar
  33. Kudina, O., Zakharchenko, A., Trotsenko, O., Tokarev, A., Ionov, L., Stoychev, G., Puretskiy, N., Pryor, S.W., Voronov, A., Minko, S.: Highly efficient phase boundary biocatalysis with enzymogel nanoparticles. Angew. Chem., Int. Ed. Engl. 53(2), 483–487 (2014)CrossRefGoogle Scholar
  34. Lee, N., Hyeon, T.: Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev. 41(7), 2575–2589 (2012)CrossRefGoogle Scholar
  35. Li, D., Teoh, W.Y., Selomulya, C., Woodward, R.C., Amal, R., Rosche, B.: Flame-sprayed superparamagnetic bare and silica-coated maghemite nanoparticles: synthesis, characterization, and protein adsorption–desorption. Chem. Mater. 18(26), 6403–6413 (2006)CrossRefGoogle Scholar
  36. Lu, A.-H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl. 46(8), 1222–1244 (2007)CrossRefGoogle Scholar
  37. Massart, R.: Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17(2), 1247–1248 (1981)CrossRefGoogle Scholar
  38. Mikhaylov, G., Mikac, U., Magaeva, A.A., Itin, V.I., Naiden, E.P., Psakhye, I., Babes, L., Reinheckel, T., Peters, C., Zeiser, R., Bogyo, M., Turk, V., Psakhye, S.G., Turk, B., Vasiljeva, O.: Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat. Nanotechnol. 6(9), 594–602 (2011)CrossRefGoogle Scholar
  39. Morhardt, C., Ketterer, B., Heißler, S., Franzreb, M.: Direct quantification of immobilized enzymes by means of FTIR ATR spectroscopy—a process analytics tool for biotransformations applying non-porous magnetic enzyme carriers. J. Mol. Catal. B 107, 55–63 (2014)CrossRefGoogle Scholar
  40. Oh, S., Cook, D.C., Townsend, H.E.: Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact. 112(1–4), 59–66 (1998)CrossRefGoogle Scholar
  41. Pavlidis, I.V., Vorhaben, T., Tsoufis, T., Rudolf, P., Bornscheuer, U.T., Gournis, D., Stamatis, H.: Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Bioresour. Technol. 115, 164–171 (2012)CrossRefGoogle Scholar
  42. Peng, Z.G., Hidajat, K., Uddin, M.S.: Adsorption of bovine serum albumin on nanosized magnetic particles. J. Colloid Interface Sci. 271(2), 277–283 (2004)CrossRefGoogle Scholar
  43. Rezwan, K., Meier, L.P., Rezwan, M., Voros, J., Textor, M., Gauckler, L.J.: Bovine serum albumin adsorption onto colloidal Al2O3 particles: a new model based on zeta potential and UV–vis measurements. Langmuir. 20(23), 10055–10061 (2004)CrossRefGoogle Scholar
  44. Roach, P., Farrar, D., Perry, C.C.: Interpretation of protein adsorption: surface-induced conformational changes. J. Am. Chem. Soc. 127(22), 8168–8173 (2005)CrossRefGoogle Scholar
  45. Rossi, L.M., Costa, Natalia J. S., Silva, F.P., Wojcieszak, R.: Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chem. 16(6), 2906–2933 (2014)CrossRefGoogle Scholar
  46. Roth, H.-C., Schwaminger, S.P., Schindler, M., Wagner, F.E., Berensmeier, S.: Influencing factors in the co-precipitation process of superparamagnetic iron oxide nano particles: a model based study. J. Magn. Magn. Mater. 377, 81–89 (2015)CrossRefGoogle Scholar
  47. Roth, H.-C., Schwaminger, S., Fraga García, P., Ritscher, J., Berensmeier, S.: Oleate coating of iron oxide nanoparticles in aqueous systems: the role of temperature and surfactant concentration. J. Nanopart. Res. 18(4) (2016a)Google Scholar
  48. Roth, H.-C., Schwaminger, S.P., Peng, F., Berensmeier, S.: Immobilization of cellulase on magnetic nanocarriers. ChemistryOpen 5(3), 183–187 (2016b)CrossRefGoogle Scholar
  49. Salazar-Alvarez, G., Muhammed, M., Zagorodni, A.A.: Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem. Eng Sci. 61(14), 4625–4633 (2006)CrossRefGoogle Scholar
  50. Santoyo Salazar, J., Perez, L., de Abril, O., Truong Phuoc, L., Ihiawakrim, D., Vazquez, M., Greneche, J.-M., Begin-Colin, S., Pourroy, G.: Magnetic iron oxide nanoparticles in 10–40 nm range: composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chem. Mater. 23(6), 1379–1386 (2011)CrossRefGoogle Scholar
  51. Schultz, N., Metreveli, G., Franzreb, M., Frimmel, F.H., Syldatk, C.: Zeta potential measurement as a diagnostic tool in enzyme immobilisation. Colloids Surf., B. 66(1), 39–44 (2008)CrossRefGoogle Scholar
  52. Schwaminger, S.P., Fraga García, P., Merck, G.K., Bodensteiner, F.A., Heissler, S., Günther, S., Berensmeier, S.: Nature of interactions of amino acids with bare magnetite nanoparticles. J. Phys. Chem. C. 119(40), 23032–23041 (2015)CrossRefGoogle Scholar
  53. Serefoglou, E., Litina, K., Gournis, D., Kalogeris, E., Tzialla, A.A., Pavlidis, I.V., Stamatis, H., Maccallini, E., Lubomska, M., Rudolf, P.: Smectite clays as solid supports for immobilization of β-glucosidase: synthesis, characterization, and biochemical properties. Chem. Mater. 20(12), 4106–4115 (2008)CrossRefGoogle Scholar
  54. Situm, A., Rahman, M.A., Goldberg, S., Al-Abadleh, H.A.: Spectral characterization and surface complexation modeling of low molecular weight organics on hematite nanoparticles: Role of electrolytes in the binding mechanism. Environ. Sci. 3(4), 910–926 (2016)Google Scholar
  55. Sonvico, F., Mornet, S., Vasseur, S., Dubernet, C., Jaillard, D., Degrouard, J., Hoebeke, J., Duguet, E., Colombo, P., Couvreur, P.: Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjugate Chem. 16(5), 1181–1188 (2005)CrossRefGoogle Scholar
  56. Sun, Z.-X., Su, F.-W., Forsling, W., Samskog, P.-O.: Surface characteristics of magnetite in aqueous suspension. J. Colloid Interface Sci. 197(1), 151–159 (1998)CrossRefGoogle Scholar
  57. Tejirian, A., Xu, F.: Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes. Appl. Environ. Microbiol. 76(23), 7673–7682 (2010)CrossRefGoogle Scholar
  58. Terris, B.D., Thomson, T.: Nanofabricated and self-assembled magnetic structures as data storage media. J. Phys. D: Appl. Phys. 38(12), R199–R222 (2005)CrossRefGoogle Scholar
  59. Tombácz, E., Illés, E., Majzik, A., Hajdú, A., Rideg, N., Szekeres, M.: Ageing in the inorganic nanoworld: example of magnetite nanoparticles in aqueous medium Croat. Chem. Acta 80(3–4), 503–515 (2007)Google Scholar
  60. Vereda, F., Martin-Molina, A., Hidalgo-Alvarez, R., Quesada-Perez, M.: Specific ion effects on the electrokinetic properties of iron oxide nanoparticles: experiments and simulations. Phys. Chem. Chem. Phys. 17(26), 17069–17078 (2015)CrossRefGoogle Scholar
  61. Wan, J., Chen, X., Wang, Z., Yang, X., Qian, Y.: A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. J. Cryst. Growth 276(3–4), 571–576 (2005)CrossRefGoogle Scholar
  62. Yu, S., Peralvarez-Marin, A., Minelli, C., Faraudo, J., Roig, A., Laromaine, A.: Albumin-coated SPIONs: an experimental and theoretical evaluation of protein conformation, binding affinity and competition with serum proteins. Nanoscale 8, 14393–14405 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sebastian P. Schwaminger
    • 1
  • Paula Fraga-García
    • 1
  • Felix Selbach
    • 1
  • Florian G. Hein
    • 1
  • Eva C. Fuß
    • 1
  • Rifki Surya
    • 1
  • Hans-Christian Roth
    • 1
  • Silvia A. Blank-Shim
    • 1
  • Friedrich E. Wagner
    • 2
  • Stefan Heissler
    • 3
  • Sonja Berensmeier
    • 1
  1. 1.Bioseparation Engineering GroupTechnical University of MunichGarchingGermany
  2. 2.Physics Department El5Technical University of MunichGarchingGermany
  3. 3.Karlsruhe Institute of Technology, Institute of Functional InterfacesEggenstein-LeopoldshafenGermany

Personalised recommendations