, Volume 22, Issue 7, pp 973–983 | Cite as

Adsorption rate of Reactive Black 5 on chitosan based materials: geometry and swelling effects

  • G. L. Dotto
  • R. Ocampo-Pérez
  • J. M. Moura
  • T. R. S. CadavalJr.
  • L. A. A. Pinto


The overall adsorption rate of Reactive Black 5 dye (RB5) on chitosan based materials was elucidated using diffusional models. Fundamental aspects, such as, geometry of the adsorbents and swelling effects were considered. Chitosan based materials (powder and film) were prepared from shrimp wastes and characterized regarding to the fundamental features for adsorption. Experimental decay curves were obtained under different conditions of stirring rate and initial dye concentration. The data were modeled according to the external mass transfer and diffusional models. The kL (external mass transfer coefficient), Dep (effective pore diffusion coefficient) and Ds (surface diffusion coefficient) values were estimated. For both adsorbents, it was found that the surface diffusion was the intraparticle diffusion mechanism governing the adsorption rate of RB5, since its contribution was higher than 92 % regardless the position and time. The Ds values ranged from 2.85 × 10−11 to 5.78 × 10−11 for chitosan powder and from 4.15 × 10−11 to 12.12 × 10−11 cm2 s−1 for chitosan films. The RB5 adsorption was faster when chitosan powder was used, mainly at higher stirring rates and initial dye concentrations. The swelling effect was most pronounced for the chitosan films, where, provided an increase of about 65 times in the Ds value.


Chitosan films Chitosan powder Reactive Black 5 Mass transfer Swelling 

List of symbols


Average relative error (%)


Dye concentration in bulk solution (mg L−1)


Dye concentration within the adsorbent varying with position and t (mg L−1)


Initial dye concentration in bulk solution (mg L−1)


Dye concentration in bulk solution at equilibrium (mg L−1)


Experimental value of CA (mg L−1)


Predicted value of CA (mg L−1)


Molecular diffusion coefficient (cm2 s−1)


Effective pore volume diffusion coefficient (cm2 s−1)


Surface diffusion coefficient (cm2 s−1)


External mass transfer coefficient (cm2 s−1)


Langmuir constant (L mg−1)


Mass of adsorbent (g)


Molecular weight of water (g mol−1)


Mass flux due pore volume diffusion (mg L−1 cm s−1)


Mass flux due surface diffusion (mg L−1 cm s−1)


Mass of dye adsorbed per gram of adsorbent (mg g−1)


Mass of dye adsorbed varying with position and t (mg g−1)


Mass of dye adsorbed at equilibrium (mg g−1)


Maximum adsorption capacity from Langmuir model (mg g−1)


Radial coordinate varying from 0 to R, RP (cm)


Coefficient of determination, dimensionless


External surface area per mass of adsorbent (cm2 g−1)


Time (min or s)


Volume of solution (L or m3)


Molar volume of solute at its normal boiling temperature (cm3 mol−1)


Cartesian coordinate, cm

Greek symbols


r2 (spherical coordinates) or 1 (Cartesian coordinates)


Void fraction, dimensionless


Viscosity of water (cp)


Apparent density of the adsorbent (g L−1)


Solid density of the adsorbent (g L−1)


r (spherical coordinates) or x (Cartesian coordinates)


Association parameter of water, dimensionless


CA/CA0, dimensionless



The authors would like to thank CAPES (Coordination for the Improvement of Higher Education Personnel), CNPq (National Council for Scientific and Technological Development) and CEME-SUL (Federal University of Rio Grande Brazil). Dr. Raúl Ocampo Perez, acknowledges the support of the Consejo Nacional de Ciencia y Tecnología, CONACyT, Mexico, through CB-2013-01 221757.


  1. Ali, I., Asim, M., Khan, T.A.: Low-cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 113, 170–183 (2012)CrossRefGoogle Scholar
  2. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–318 (1938)CrossRefGoogle Scholar
  3. Chong, M.N., Tneu, Z.Y., Poh, P.E., Jin, B., Aryal, R.: Synthesis, characterisation and application of TiO2–zeolite nanocomposites for the advanced treatment of industrial dye wastewater. J. Taiwan Inst. Chem. Eng. 50, 288–296 (2015)CrossRefGoogle Scholar
  4. Crini, G., Badot, P.M.: Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog. Polym. Sci. 33, 399–447 (2008)CrossRefGoogle Scholar
  5. Demirbas, A.: Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J. Hazard. Mater. 167, 1–9 (2009)CrossRefGoogle Scholar
  6. Dotto, G.L., Buriol, C., Pinto, L.A.A.: Diffusional mass transfer model for the adsorption of food dyes on chitosan films. Chem. Eng. Res. Des. 92, 2324–2332 (2014)CrossRefGoogle Scholar
  7. Dotto, G.L., Moura, J.M., Cadaval Jr., T.R.S., Pinto, L.A.A.: Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption. Chem. Eng. J. 214, 8–16 (2013)CrossRefGoogle Scholar
  8. Dotto, G.L., Pinto, L.A.A.: Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: stirring rate effect in kinetics and mechanism. J. Hazard. Mater. 187, 164–170 (2011)CrossRefGoogle Scholar
  9. Dotto, G.L., Sharma, S.K., Pinto, L.A.A.: Biosorption of organic dyes: research opportunities and challenges. In: Sharma, S.K. (ed.) Green Chemistry for Dyes Removal from Waste Water: Research Trends and Applications, pp. 295–329. Scrivener Publishing LLC, Beverly (2015)CrossRefGoogle Scholar
  10. Dotto, G.L., Souza, V.C., Pinto, L.A.A.: Drying of chitosan in a spouted bed: the influences of temperature and equipment geometry in powder quality. LWT Food Sci. Technol. 44, 1786–1792 (2011)CrossRefGoogle Scholar
  11. Erdem, B., Erdem, M., Özcan, A.S.: Adsorption of Reactive Black 5 onto quaternized 2–dimethylaminoethyl methacrylate based polymer/clay nanocomposites. Adsorption (2016). doi: 10.1007/s10450-016-9773-1 Google Scholar
  12. Esquerdo, V.M., Cadaval Jr., T.R.S., Dotto, G.L., Pinto, L.A.A.: Chitosan scaffold as an alternative adsorbent for the removal of hazardous food dyes from aqueous solutions. J. Colloid Interface Sci. 424, 7–15 (2014)CrossRefGoogle Scholar
  13. Franco, D.S.P., Piccin, J.S., Lima, E.C., Dotto, G.L.: Interpretations about methylene blue adsorption by surface modified chitin using the statistical physics treatment. Adsorption 21, 557–564 (2015)CrossRefGoogle Scholar
  14. Furusawa, T., Smith, J.M.: Fluid-particle and intraparticle mass transport rates in slurries. Ind. Eng. Chem. Fundam. 12, 197–203 (1973)CrossRefGoogle Scholar
  15. Goldstein, J.I., Newbury, D.E., Echil, P., Joy, D.C., Romig Jr., A.D., Lyman, C.E., Fiori, C., Lifshin, E.: Scanning Electron Microscopy and X-ray Microanalysis. Plenum Press, New York (1992)CrossRefGoogle Scholar
  16. Gupta, V.K., Suhas, I.: Application of low-cost adsorbents for dye removal: a review. J. Environ. Manag. 90, 2313–2342 (2009)CrossRefGoogle Scholar
  17. He, X., Du, M., Li, H., Zhou, T.: Removal of direct dyes from aqueous solution by oxidized starch cross-linked chitosan/silica hybrid membrane. Int. J. Biol. Macromol. 82, 174–181 (2016)CrossRefGoogle Scholar
  18. Koprivanac, N., Kusic, H.: Hazardous Organic Pollutants in Colored Wastewaters. New Science Publishers, New York (2008)Google Scholar
  19. Kyzas, G.Z., Kostoglou, M., Lazaridis, N.K.: Relating interactions of dye molecules with chitosan to adsorption kinetic data. Langmuir 26, 9617–9626 (2010)CrossRefGoogle Scholar
  20. Kyzas, G.Z., Lazaridis, N.K., Kostoglou, M.: Modelling the effect of pre-swelling on adsorption dynamics of dyes by chitosan derivatives. Chem. Eng. Sci. 81, 220–230 (2012)CrossRefGoogle Scholar
  21. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)CrossRefGoogle Scholar
  22. Mehrjouei, M., Müller, S., Möller, D.: A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem. Eng. J. 263, 209–219 (2015)CrossRefGoogle Scholar
  23. Moura, J.M., Farias, B.S., Rodrigues, D.A.S., Moura, C.M., Dotto, G.L., Pinto, L.A.A.: Preparation of chitosan with different characteristics and its application for biofilms production. J. Polym. Environ. 23, 470–477 (2015)CrossRefGoogle Scholar
  24. Ocampo-Pérez, R., Leyva-Ramos, R., Alonso-Davila, P., Rivera-Utrilla, J., Sánchez-Polo, M.: Modeling adsorption rate of pyridine onto granular activated carbon. Chem. Eng. J. 165, 133–141 (2010)CrossRefGoogle Scholar
  25. Ocampo-Pérez, R., Leyva-Ramos, R., Mendoza-Barron, J., Guerrero-Coronado, R.M.: Adsorption rate of phenol from aqueous solution onto organobentonite: surface diffusion and kinetic models. J. Colloid Interface Sci. 364, 195–204 (2011)CrossRefGoogle Scholar
  26. Ocampo-Pérez, R., Leyva-Ramos, R., Rivera-Utrilla, J., Flores-Cano, J.V., Sánchez-Polo, M.: Modeling adsorption rate of tetracyclines on activated carbons from aqueous phase. Chem. Eng. Res. Des. 104, 579–588 (2015)CrossRefGoogle Scholar
  27. Ocampo-Pérez, R., Rivera-Utrilla, J., Gómez-Pacheco, C., Sánchez-Polo, M., López-Peñalver, J.J.: Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase. Chem. Eng. J. 213, 88–96 (2012)CrossRefGoogle Scholar
  28. Prausnitz, J.M., Tavares, F.W.: Thermodynamics of fluid-phase equilibria for standard chemical engineering operations. AIChE J. 50, 739–761 (2004)CrossRefGoogle Scholar
  29. Qiu, H., Pan, L.L., Zhang, Q.J., Zhang, W., Zhang, Q.: Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A10, 716–724 (2009)CrossRefGoogle Scholar
  30. Rêgo, T.V., Cadaval Jr, T.R.S., Dotto, G.L., Pinto, L.A.A.: Statistical optimization, interaction analysis and desorption studies for the azo dyes adsorption onto chitosan films. J. Colloid Interface Sci. 411, 27–33 (2013)CrossRefGoogle Scholar
  31. Ruthven, D.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)Google Scholar
  32. Salleh, M.A.M., Mahmoud, D.K., Karim, W.A.W.A., Idris, A.: Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280, 1–13 (2011)CrossRefGoogle Scholar
  33. Saratale, R.G., Saratale, G.D., Chang, J.S., Govindwar, S.P.: Bacterial decolorization and degradation of azo dyes: a review. J. Taiwan Inst. Chem. Eng. 42, 138–157 (2011)CrossRefGoogle Scholar
  34. Silverstein, R.M., Webster, F.X., Kiemle, D.J.: Spectrometric Identification of Organic Compounds. Wiley, New York (2007)Google Scholar
  35. Srinivasan, A., Viraraghavan, T.: Decolorization of dye wastewaters by biosorbents: a review. J. Environ. Manag. 91, 1915–1929 (2010)CrossRefGoogle Scholar
  36. Su, C.X.H., Low, L.W., Teng, T.T., Wong, Y.S.: Combination and hybridisation of treatments in dye wastewater treatment: a review. J. Environ. Chem. Eng. (2016). doi: 10.1016/j.jece.2016.07.026 Google Scholar
  37. Suzuki, M.: Adsorption Engineering. Kodansha, Tokyo (1990)Google Scholar
  38. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)CrossRefGoogle Scholar
  39. Vakili, M., Rafatullah, M., Salamatinia, M., Abdullah, A.Z., Ibrahim, M.H., Tan, K.B., Gholami, Z., Amouzgar, P.: Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr. Polym. 113, 115–130 (2014)CrossRefGoogle Scholar
  40. Verma, A.K., Dash, R.R., Bhunia, P.A.: A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manag. 93, 154–168 (2012)CrossRefGoogle Scholar
  41. Wilke, C.R., Chang, P.: Correlation of diffusion coefficients in dilute solutions. AIChE J. 1, 264–268 (1955)CrossRefGoogle Scholar
  42. Yagub, M.T., Sen, T.K., Afroze, S., Ang, H.M.: Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 209, 172–184 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • G. L. Dotto
    • 1
  • R. Ocampo-Pérez
    • 2
  • J. M. Moura
    • 3
  • T. R. S. CadavalJr.
    • 3
  • L. A. A. Pinto
    • 3
  1. 1.Environmental Processes Laboratory, Chemical Engineering DepartmentFederal University of Santa Maria – UFSMSanta MariaBrazil
  2. 2.Facultad de Ciencias Químicas, Centro de Investigación y Estudios de PosgradoUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  3. 3.Industrial Technology Laboratory, School of Chemistry and FoodFederal University of Rio Grande-FURGRio GrandeBrazil

Personalised recommendations