, Volume 22, Issue 3, pp 371–383 | Cite as

Ion-exchange properties of microdispersed sintered detonation nanodiamond

  • Anton Peristyy
  • Brett Paull
  • Pavel N. NesterenkoEmail author


The adsorption of transition metal cations and inorganic anions from aqueous solutions on microdispersed sintered detonation nanodiamond (MSDN) is systematically studied. The selectivity series Fe3+ > Al3+ > Cu2+ > Mn2+ > Zn2+ > Cd2+ > Co2+ > Ni2+ with maximum adsorption capacity between 2 and 5 µmol g−1 is obtained. It is found that anions may significantly contribute to the adsorption of transition metal cations, so the adsorption of CH3COO, Cl, B4O7 2−, ClO4 , I, SO4 2−, C2O4 2−, PO4 3− is also studied. For the first time, dominating adsorption of anions over cations is demonstrated for detonation nanodiamond. The maximum anion-exchange capacity of 50–150 µmol g−1 is found for MSDN. Beside of electrostatic interactions, the formation of complexes with hydroxyl groups and interaction with metal impurities contribute to the adsorption of B4O7 2− and PO4 3−, respectively. Therefore, anion exchange selectivity of MSDN is different from that observed for common anion exchange resins. In all cases, the adsorption on MSDN obeys Langmuir law. The pH effect on the adsorption of SO4 2−, PO4 3− and B4O7 2− is different from that observed for other anions due to specific interactions.


Detonation nanodiamond Adsorption Metal cations Inorganic anions Ion-exchange Surface 



This work was supported by grants from the Australian Research Council to ACROSS (DP110102046 and DP150101518). The authors would also like to acknowledge the Central Science Laboratory (University of Tasmania) and for substantial instrumental support and service.

Supplementary material

10450_2016_9786_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)


  1. Aleksenskii, A.E., Baidakova, M.V., Vul’, A.Y., Siklitskii, V.I.: The structure of diamond nanoclusters. Phys. Solid State 41, 668–671 (1999)CrossRefGoogle Scholar
  2. Boehm, H.P.: Some aspects of the surface-chemistry of carbon-blacks and other carbons. Carbon 32, 759–769 (1994)CrossRefGoogle Scholar
  3. Bogatyreva, G.P., Marinich, M.A., Gvyazdovskaya, V.L.: Diamond—an adsorbent of a new type. Diam. Relat. Mater. 9, 2002–2005 (2000)CrossRefGoogle Scholar
  4. Bogatyreva, G.P., Marinich, M.A., Bazalii, G.A., Gvyazdovskaya, V.L.: Polycrystalline nanodiamond based powders as adsorbents for biological media. Nanosyst. Nanomater. Nanotechnol. 6, 1227–1236 (2008a)Google Scholar
  5. Bogatyreva, G.P., Voloshin, M.N., Padalko, V.I.: Detonation synthesized nanodiamond powder for the preparation of porous polycrystalline micron powders. Diam. Relat. Mater. 17, 213–216 (2008b)CrossRefGoogle Scholar
  6. Bogatyreva, G.P., Marinich, M.A., Bazalii, G.A.: Application of nanocarbon materials for the purification of biological media. Electron. Comm. 15, 34–38 (2010a).
  7. Bogatyreva, G.P., Marinich, M.A., Bazalii, G.A., Il’niskaya, G.D.: Adsorption processes on the surface of new types of diamond powders in biological media. Nanosyst. Nanomater. Nanotechnol. 8, 851–859 (2010b)Google Scholar
  8. Buchatskaya, Y., Romanchuk, A., Yakovlev, R., Shiryaev, A., Kulakova, I., Kalmykov, S.: Sorption of actinides onto nanodiamonds. Radiochim. Acta 103, 205–211 (2015)CrossRefGoogle Scholar
  9. Caterino, R., Csiki, R., Wiesinger, M., Sachsenhauser, M., Stutzmann, M., Garrido, J.A., Cattani-Scholz, A., Speranza, G., Janssens, S.D., Haenen, K.: Organophosphonate biofunctionalization of diamond electrodes. ACS Appl. Mater. Interf. 6, 13909–13916 (2014)CrossRefGoogle Scholar
  10. Chang, L.Y., Osawa, E., Barnard, A.S.: Confirmation of the electrostatic self-assembly of nanodiamonds. Nanoscale 3, 958–962 (2011)CrossRefGoogle Scholar
  11. Chen, J.P., Lin, M.S.: Equilibrium and kinetics of metal ion adsorption onto a commercial H-type granular activated carbon: experimental and modeling studies. Water Res. 35, 2385–2394 (2001)CrossRefGoogle Scholar
  12. Chen, W.H., Lee, S.C., Sabu, S., Fang, H.C., Chung, S.C., Han, C.C., Chang, H.C.: Solid-phase extraction and elution on diamond (SPEED): a fast and general platform for proteome analysis with mass spectrometry. Anal. Chem. 78, 4228–4234 (2006)CrossRefGoogle Scholar
  13. Chiganova, G.A., Bondar, V.A., Chiganov, A.S.: Electrophoretic behavior of hydrosols of ultradisperse diamond and modification of its surface. Colloid J. Russ. Acad. Sci. 55, 774–775 (1993)Google Scholar
  14. Chiganova, G.A., Chul’myakova, D.A., Mordvinova, L.E., Petrova, T.I.: A nickel-substituted form of nanodiamonds and its catalytic activity in decomposition of hydrogen peroxide. Russ. J. Appl. Chem. 85, 177–181 (2012)CrossRefGoogle Scholar
  15. Chiganova, G.A., Tyryshkina, L.E., Ivanenko, A.A.: Nanodiamonds effect on characteristics of copper galvanic coatings. Russ. J. Appl. Chem. 86, 1311–1313 (2013)CrossRefGoogle Scholar
  16. Chukhaeva, S.I., Cheburina, L.A.: Sorption activity of nanodiamonds on cesium. Sverkhtv. Mater. 2, 43–48 (2000)Google Scholar
  17. Dolenko, T.A., Burikov, S.A., Laptinskiy, K.A., Laptinskaya, T.V., Rosenholm, J.M., Shiryaev, A.A., Sabirov, A.R., Vlasov, I.I.: Study of adsorption properties of functionalized nanodiamonds in aqueous solutions of metal salts using optical spectroscopy. J. Alloys Compd. 586, S436–S439 (2014)CrossRefGoogle Scholar
  18. Fedyanina, O.N., Nesterenko, P.N.: Regularities of chromatographic retention of phenols on microdispersed sintered detonation nanodiamond in aqueous-organic solvents. Russ. J. Phys. Chem. A 84, 476–480 (2010)CrossRefGoogle Scholar
  19. Fedyanina, O.N., Nesterenko, P.N.: Regularities of retention of benzoic acids on microdispersed detonation nanodiamonds in water-methanol mobile phases. Russ. J. Phys. Chem. A 85, 1773–1777 (2011)CrossRefGoogle Scholar
  20. Gibson, N., Shenderova, O., Luo, T.J.M., Moseenkov, S., Bondar, V., Puzyr, A., Purtov, K., Fitzgerald, Z., Brenner, D.W.: Colloidal stability of modified nanodiamond particles. Diam. Relat. Mater. 18, 620–626 (2009)CrossRefGoogle Scholar
  21. Goertzen, S.L., Theriault, K.D., Oickle, A.M., Tarasuk, A.C., Andreas, H.A.: Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon 48, 1252–1261 (2010)CrossRefGoogle Scholar
  22. Haddad, P.R., Nesterenko, P.N., Buchberger, W.: Recent developments and emerging directions in ion chromatography. J. Chromatogr. A 1184, 456–473 (2008)CrossRefGoogle Scholar
  23. Hubicki, Z., Kolodynska, D.: Selective Removal of Heavy Metal Ions from Waters and Waste Waters Using Ion Exchange Methods. InTech, Rijeka (2015)Google Scholar
  24. Hunter, R.J.: Zeta Potential in Colloid Science: Principles and Applications. Academic Press, London (1981)Google Scholar
  25. Ivanov, M.G., Pavlyshko, S.V., Ivanov, D.M., Petrov, I., Shenderova, O.: Synergistic compositions of colloidal nanodiamond as lubricant-additive. J. Vac. Sci. Technol. B 28, 869–877 (2010)CrossRefGoogle Scholar
  26. Kalijadis, A.M., Vukcevic, M.M., Jovanovic, Z.M., Lausevic, Z.V., Lausevic, M.D.: Characterisation of surface oxygen groups on different carbon materials by the Boehm method and temperature-programmed desorption. J. Serb. Chem. Soc. 76, 757–768 (2011)CrossRefGoogle Scholar
  27. Kulakova, I.I.: Surface chemistry of nanodiamonds. Phys. Solid State 46, 636–643 (2004)CrossRefGoogle Scholar
  28. Manus, L.M., Mastarone, D.J., Waters, E.A., Zhang, X.Q., Schultz-Sikma, E.A., MacRenaris, K.W., Ho, D., Meade, T.J.: Gd(III)–nanodiamond conjugates for MRI contrast enhancement. Nano Lett. 10, 484–489 (2010)CrossRefGoogle Scholar
  29. Martell AE, Smith RM (2004) NIST critically selected stability constants of metal complexes. NIST standard reference database 46. Version 8.0Google Scholar
  30. Mitev, D.P., Townsend, A.T., Paull, B., Nesterenko, P.N.: Direct sector field ICP-MS determination of metal impurities in detonation nanodiamond. Carbon 60, 326–334 (2013)CrossRefGoogle Scholar
  31. Mitev, D.P., Townsend, A.T., Paull, B., Nesterenko, P.N.: Microwave-assisted purification of detonation nanodiamond. Diam. Relat. Mater. 48, 37–46 (2014a)CrossRefGoogle Scholar
  32. Mitev, D., Townsend, A., Paull, B., Nesterenko, P.: Screening of elemental impurities in commercial detonation nanodiamond using sector field inductively coupled plasma-mass spectrometry. J. Mater. Sci. 49, 3573–3591 (2014b)CrossRefGoogle Scholar
  33. Mochalin, V.N., Shenderova, O., Ho, D., Gogotsi, Y.: The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012)CrossRefGoogle Scholar
  34. Nesterenko, P.N., Fedyanina, O.N.: Properties of microdispersed sintered nanodiamonds as a stationary phase for normal-phase high performance liquid chromatography. J. Chromatogr. A 1217, 498–505 (2010)CrossRefGoogle Scholar
  35. Nesterenko, P.N., Haddad, P.R.: Diamond-related materials as potential new media in separation science. Anal. Bioanal. Chem. 396, 205–211 (2010)CrossRefGoogle Scholar
  36. Nesterenko, P.N., Jones, P.: Recent developments in the high-performance chelation ion chromatography of trace metals. J. Sep. Sci. 30, 1773–1793 (2007)CrossRefGoogle Scholar
  37. Nesterenko, P.N., Fedyanina, O.N., Volgin, Y.V., Jones, P.: Ion chromatographic investigation of ion-exchange properties of microdisperse sintered nanodiamonds. J. Chromatogr. A 1155, 2–7 (2007)CrossRefGoogle Scholar
  38. Nguyen, T.T.B., Chang, H.C., Wu, V.W.K.: Adsorption and hydrolytic activity of lysozyme on diamond nanocrystallites. Diam. Relat. Mater. 16, 872–876 (2007)CrossRefGoogle Scholar
  39. Ozawa, M., Inaguma, M., Takahashi, M., Kataoka, F., Kruger, A., Osawa, E.: Preparation and behavior of brownish, clear nanodiamond colloids. Adv. Mater. 19, 1201–1206 (2007)CrossRefGoogle Scholar
  40. Paci, J.T., Man, H.B., Saha, B., Ho, D., Schatz, G.C.: Understanding the surfaces of nanodiamonds. J. Phys. Chem. C 117, 17256–17267 (2013)CrossRefGoogle Scholar
  41. Penner, N.A., Nesterenko, P.N.: Application of neutral hydrophobic hypercrosslinked polystyrene to the separation of inorganic anions by ion chromatography. J. Chromatogr. A 884, 41–51 (2000)CrossRefGoogle Scholar
  42. Peristyy, A.A., Fedyanina, O.N., Paull, B., Nesterenko, P.N.: Diamond based adsorbents and their application in chromatography. J. Chromatogr. A 1357, 68–86 (2014)CrossRefGoogle Scholar
  43. Peristyy, A., Paull, B., Nesterenko, P.N.: Chromatographic performance of synthetic polycrystalline diamond as a stationary phase in normal phase high performance liquid chromatography. J. Chromatogr. A 1391, 49–59 (2015)CrossRefGoogle Scholar
  44. Petit, T., Girard, H.A., Trouve, A., Batonneau-Gener, I., Bergonzo, P., Arnault, J.C.: Surface transfer doping can mediate both colloidal stability and self-assembly of nanodiamonds. Nanoscale 5, 8958–8962 (2013)CrossRefGoogle Scholar
  45. Sakurai, H., Ebihara, N., Osawa, E., Takahashi, M., Fujinami, M., Oguma, K.: Adsorption characteristics of a nanodiamond for oxoacid anions and their application to the selective preconcentration of tungstate in water samples. Anal. Sci. 22, 357–362 (2006)CrossRefGoogle Scholar
  46. Schmidlin, L., Pichot, V., Comet, M., Josset, S., Rabu, P., Spitzer, D.: Identification, quantification and modification of detonation nanodiamond functional groups. Diam. Relat. Mater. 22, 113–117 (2012)CrossRefGoogle Scholar
  47. Seco, A., Gabaldon, C., Marzal, P., Aucejo, A.: Effect of pH, cation concentration and sorbent concentration on cadmium and copper removal by a granular activated carbon. J. Chem. Technol. Biotechnol. 74, 911–918 (1999)CrossRefGoogle Scholar
  48. Shames, A.I., Panich, A.M., Osipov, V.Y., Aleksenskiy, A.E., Vul’, A.Y., Enoki, T., Takai, K.: Structure and magnetic properties of detonation nanodiamond chemically modified by copper. J. Appl. Phys. 107, 014318 (2010)CrossRefGoogle Scholar
  49. Simonnot, M.O., Castel, C., Nicolai, M., Rosin, C., Sardin, M., Jauffret, H.: Boron removal from drinking water with a boron selective resin: is the treatment really selective? Water Res. 34, 109–116 (2000)CrossRefGoogle Scholar
  50. Skorik, N.A., Krivozubov, A.L., Karzhenevskii, A.P., Spitsyn, B.V.: Physicochemical study of the nanodiamond surface. Prot. Met. Phys. Chem. Surf. 47, 54–58 (2011)CrossRefGoogle Scholar
  51. Strelko, V., Malik, D.J.: Characterization and metal sorptive properties of oxidized active carbon. J. Colloid Interf. Sci. 250, 213–220 (2002)CrossRefGoogle Scholar
  52. Watanabe, M., Kimura, T.: Adsorption of actinides on diamond surface. International Conference on Diamond and Carbon Materials, Granada, Spain O81 (2012)Google Scholar
  53. Wiest, L.A., Jensen, D.S., Hung, C.H., Olsen, R.E., Davis, R.C., Vail, M.A., Dadson, A.E., Nesterenko, P.N., Linford, M.R.: Pellicular particles with spherical carbon cores and porous nanodiamond/polymer shells for reversed-phase HPLC. Anal. Chem. 83, 5488–5501 (2011)CrossRefGoogle Scholar
  54. Williams, O.A.: Nanocrystalline diamond. Diam. Relat. Mater. 20, 621–640 (2011)CrossRefGoogle Scholar
  55. Yushin, G.N., Osswald, S., Padalko, V.I., Bogatyreva, G.P., Gogotsi, Y.: Effect of sintering on structure of nanodiamond. Diam. Relat. Mater. 14, 1721–1729 (2005)CrossRefGoogle Scholar
  56. Zhu, Y.W., Shen, X.Q., Feng, Z.J., Xu, X.G., Wang, B.C.: On the zeta-potential of nanodiamond in aqueous systems. J. Mater. Sci. Technol. 20, 469–471 (2004)Google Scholar
  57. Zhu, Y., Li, W., Zhang, Y., Li, J., Liang, L., Zhang, X., Chen, N., Sun, Y., Chen, W., Tai, R., Fan, C., Huang, Q.: Excessive sodium ions delivered into cells by nanodiamonds: implications for tumor therapy. Small 8, 1771–1779 (2012)CrossRefGoogle Scholar
  58. Zhu, Y., Zhang, Y., Shi, G., Yang, J., Zhang, J., Li, W., Li, A., Tai, R., Fang, H., Fan, C., Huang, Q.: Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity. Part. Fibre Toxicol. 12, 1–11 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anton Peristyy
    • 1
  • Brett Paull
    • 1
  • Pavel N. Nesterenko
    • 1
    Email author
  1. 1.Australian Centre for Research on Separation Science, School of Physical ScienceUniversity of TasmaniaHobartAustralia

Personalised recommendations