Advertisement

Adsorption

, Volume 22, Issue 4–6, pp 825–837 | Cite as

Application of the surface potential data to elucidate interfacial equilibrium at ceria/aqueous electrolyte interface

  • Danijel Namjesnik
  • Sanela Mutka
  • Damir Iveković
  • Andreja Gajović
  • Marc Willinger
  • Tajana PreočaninEmail author
Article

Abstract

Interfacial properties of ceria (CeO2) nanoparticles and highly organized ceria crystal planes {111} and {100} in the aqueous electrolyte solution were studied. It was confirmed by high resolution electron spectroscopy that a primary ceria nanoparticle consists mostly of two crystal planes {111} and {100} with different surface sites exposed to the aqueous electrolyte solution. Interfacial properties of ceria nanoparticles are directly related to the reactivity and surface densities of existing surface sites. However, surface characterization (potentiometric titrations and electrophoretic measurements) provides only some kind of average surface properties i.e. average surface charge densities and surface potentials. The point of zero charge (pHpzc) of ceria nanoparticles was measured to be between 6.4 and 8.7, depending on the electrolyte concentration, and the isoelectric point at pHiep = 6.5. With the purpose of understanding ceria nanoparticles surface charging the inner surface potentials of ceria macro crystal planes {111} and {100} were measured for the first time, by means of single crystal electrodes, as a function of pH and ionic strength. The inner surface potential directly affects the state of ionic species bound to a certain surface plane and is thus an essential parameter governing interfacial equilibrium. From the measured Ψ 0(pH) data and applying the Multi Site Complexation Model the thermodynamic equilibrium constants of doubly-coordinated ≡Ce2-OH (at the {100} ceria crystal plane) as well as singly-coordinated ≡Ce1-OH and triply-coordinated ≡Ce3-OH (at the {111} ceria crystal plane) were evaluated. The Ψ 0(pH) function differs for two examined ceria planes, however the inner surface potentials of both planes depend on ionic strength having a broad electroneutrality region between pH = 6 and pH = 9.

Keywords

Ceria Nanoparticles Single crystal Surface properties Inner surface potential Surface complexation MUSIC model 

Notes

Acknowledgments

This work has been supported by Croatian Science Foundation under the project (IP-2014-09-6972) and by Croatian Academy of Sciences and Arts under the project “Surface properties of cerium oxide nanoparticles in aqueous electrolyte solutions”. The authors are grateful to the Laboratory for Precipitation Processes, Ruđer Bošković Institute (Zagreb, Croatia) for BET measurements, and dr. Dominik Cinčić (Department of Chemistry, Faculty of Science, University of Zagreb) for powder X-ray diffraction measurements.

References

  1. Antonova, A.A., Zhilina, O.V., Kagramanov, G.G., Kienskaya, K.I., Nazarov, V.V., Petropavlovskii, I.A., Fanasyutkina, I.E.: Synthesis and some properties of cerium dioxide hydrosols. Colloid J. 63, 662–667 (2001)CrossRefGoogle Scholar
  2. Barisik, M., Atalay, S., Beskok, A., Qian, S.: Size dependent surface charge properties of silica nanoparticles. J. Phys. Chem. C 118, 1836–1842 (2014)CrossRefGoogle Scholar
  3. Delgado, A.V., Gonzalez-Caballero, F., Hunter, R.J., Koopal, L.K., Lyklema, J.: Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 309, 194–224 (2007)CrossRefGoogle Scholar
  4. Diamond—Crystal and Molecular Structure Visualization, Crystal Impact—Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn. http://www.crystalimpact.com/diamond (2015). Accessed 1 Sept 2015)
  5. de Faria, L.A., Trasatti, S.: The point of zero charge of CeO2. J. Colloid Interface Sci. 167, 352–357 (1994)CrossRefGoogle Scholar
  6. Gulicovski, J.J., Bračko, I., Milonjić, S.K.: Morphology and the isoelectric point of nanosized aqueous ceria sols. Mater. Chem. Phys. 148, 868–873 (2014)CrossRefGoogle Scholar
  7. Hiemstra, T., van Riemsdijk, W.H., Bolt, G.H.: Multisite proton adsorption modeling at the solid/solution interface and (hydr)oxides: a new approach, I. Model description and evaluation of intrinstic reaction constants. J. Colloid Interface Sci. 133, 91–104 (1989)CrossRefGoogle Scholar
  8. Hiemstra, T., van Riemsdijk, W.H.: A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interface Sci. 179, 488–508 (1996)CrossRefGoogle Scholar
  9. Hiemstra, T., van Riemsdijk, W.H.: On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides. J. Colloid Interface Sci. 301, 1–18 (2006)CrossRefGoogle Scholar
  10. Hsu, W.P., Ronnquist, L., Matijevic, E.: Preparation and properties of monodispersed colloidal particles of lanthanide compounds. 2. Cerium(IV). Langmuir 4, 31–37 (1988)CrossRefGoogle Scholar
  11. Hsu, J.-P., Nacu, A.: An experimental study on the rheological properties of aqueous ceria dispersions. J. Colloid Interface Sci. 274, 277–284 (2004)CrossRefGoogle Scholar
  12. Hunter, R.J.: Zeta Potentials in Colloid Science. Academic Press, London (1981)Google Scholar
  13. Kallay, N., Dojnović, Z., Čop, A.: Surface potential at the hematite–water interface. J. Colloid Interface Sci. 286, 610–614 (2005)CrossRefGoogle Scholar
  14. Kallay, N., Žalac, S., Kovačević, D.: Thermodynamics of the solid/liquid interface. Its application to adsorption and colloid stability. In: Lützenkirchen, J. (ed.) Surface Complexation Modelling. Interface Science and Technology Series. Elsevier, Amsterdam (2006)Google Scholar
  15. Kallay, N., Preočanin, T., Ivšić, T.: Determination of surface potential from the electrode potential of a single-crystal electrode. J. Colloid Interface Sci. 309, 21–27 (2007)CrossRefGoogle Scholar
  16. Kallay, N., Preočanin, T., Kovačević, D., Lützenkirchen, J., Chibowski, E.: Electrostatic potentials at solid/liquid interfaces—review. Croat. Chem. Acta 83, 357–370 (2010)Google Scholar
  17. Kallay, N., Preočanin, T., Sapunar, M., Namjesnik, D.: Common surface potential of different crystal planes in electrical contact. Surf. Innov. 2, 142–150 (2014)CrossRefGoogle Scholar
  18. Kallay, N., Kovačević, D., Čop, A.: Interpretation of interfacial equilibria on the basis of adsorption and electrokinetic data. In: Kallay, N. (ed.) Interfacial Dynamics. Marcel Dekker Inc, New York (2000)Google Scholar
  19. Karakoti, A.S., Monteiro-Riviere, N.A., Aggarwal, R., Davis, J.P., Narayan, R.J., Self, W.T., McGinnis, J., Seal, S.: Nanoceria as antioxidant: synthesis and biomedical applications. JOM 60, 33–37 (2008)CrossRefGoogle Scholar
  20. Langford, J., Wilson, A.: Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–103 (1978)CrossRefGoogle Scholar
  21. Lin, Y., Wu, Z., Wen, J., Poeppelmeier, K.R., Marks, L.D.: Imaging the atomic surface structures of CeO2 nanoparticles. Nano Lett. 14, 191–196 (2014)CrossRefGoogle Scholar
  22. Lützenkirchen, J. (ed.): Surface Complexation Modelling. Interface Science and Technology Series. Elsevier, Amsterdam (2006)Google Scholar
  23. Lützenkirchen, J., Heberling, F., Šupljika, F., Preočanin, T., Kallay, N., Johann, F., Weisser, L., Eng, P.J.: Structure-charge relationship: the case of hematite (001). Faraday Discuss. 180, 55–79 (2015)CrossRefGoogle Scholar
  24. Lyklema, J.: Fundamentals of Interface and Colloid Science, Vol. II: Solid-Liquid Interface. Academic Press, London (1995)Google Scholar
  25. Melchionna, M., Fornasiero, P.: The role of ceria-based nanostructured materials in energy applications. Mater. Today 17, 349–357 (2014)CrossRefGoogle Scholar
  26. Monshi, A., Foroughi, M.R., Monshi, M.R.: Modified scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2, 154–160 (2012)CrossRefGoogle Scholar
  27. Morris, V., Fleming, P.G., Holmes, J.D., Morris, M.A.: Comparison of the preparation of cerium oxide nanocrystallites by forward (base to acid) and reverse (acid to base) precipitation. Chem. Eng. Sci. 91, 102–110 (2013)CrossRefGoogle Scholar
  28. Nabavi, M., Spalla, O., Cabanet, B.: Surface chemistry of nanometric ceria particles in agueous dispersions. J. Colloid Interface Sci. 160, 459–471 (1993)CrossRefGoogle Scholar
  29. Namai, Y., Fukui, K., Iwasawa, Y.: Atom-resolved noncontact atomic force microscopic observations of CeO2 (111) surfaces with different oxidation states: surface structure and behavior of surface oxygen atoms. J. Phys. Chem. B 107, 11666–11673 (2003)CrossRefGoogle Scholar
  30. Noh, J.S., Schwarz, J.A.: Estimation of the point of zero charge of simple oxides by mass titration. J. Colloid Interface Sci. 130, 157–164 (1989)CrossRefGoogle Scholar
  31. Ocana, M.: Preparation and properties of uniform praseodymium-doped ceria colloidal particles. Colloid Polym. Sci. 280, 274–281 (2002)CrossRefGoogle Scholar
  32. Oh, M.-H., Lee, J.-S., Gupta, S., Chang, F.-C., Singh, R.K.: Preparation of monodispersed silica particles coated with ceria and control of coating thickness using sol-type precursor. Colloids Surf. A 355, 1–6 (2010)CrossRefGoogle Scholar
  33. Ould-Moussa, N., Safi, M., Guedeau-Boudeville, M.-A., Montero, D., Conjeaud, H., Berret, J.-F.: In vitro toxicity of nanoceria: effect of coating and stability in biofluids. Nanotoxicology 8, 799–811 (2014)Google Scholar
  34. Park, J., Regalbuto, J.R.: A simple, accurate determination of oxide PZC and the strong buffering effect of oxide surfaces at incipient wetness. J. Colloid Interface Sci. 175, 239–252 (1995)CrossRefGoogle Scholar
  35. Preočanin, T., Kallay, N.: Application of « mass titration » to determination of surface charge of metal oxides. Croat. Chem. Acta 71, 1117–1125 (1998)Google Scholar
  36. Preočanin, T., Kallay, N.: Point of zero charge and surface charge density of TiO2 in aqueous electrolyte solution as obtained by potentiometric mass titration. Croat. Chem. Acta 79, 95–106 (2006)Google Scholar
  37. Preočanin, T., Kallay, N.: Effect of electrolyte on the surface potential of hematite in aqueous electrolyte solutions. Surf. Eng. 24, 253–258 (2008)CrossRefGoogle Scholar
  38. Preočanin, T., Kallay, N.: Evaluation of surface potential from single crystal electrode potential. Adsorption 19, 259–267 (2013)CrossRefGoogle Scholar
  39. Ray, K.C., Sengupta, P.K., Roy, S.K.: Electrokinetic and adsorption studies on ceric oxide-aqueous interface. Indian J. Chem. Sect. 17, 348–351 (1979)Google Scholar
  40. Reed, K., Cormak, A., Kulkarni, A., Mayton, M., Sayle, D., Kleassig, F., Stadler, B.: Expolring the properties and applications of nanoceria: is there still pleanty of room at the bottom? Environ. Sci. NANO 1, 390–405 (2014)CrossRefGoogle Scholar
  41. Rudzinski, W., Charmas, R., Piasecki, W., Cases, J.M., Francois, M., Villieras, F., Michot, L.J.: Calorimetric studies of simple ion adsorption at oxide/electrolyte interface titration experiments and their theoretical analysis based on 2-pK charging mechanism and on the triple layer model. Colloid Surf. A 137, 57–68 (1998)CrossRefGoogle Scholar
  42. Schindler, R., Stumm, W.: The surface chemistry of oxides, hydroxides, and oxide minerals. In: Stumm, W. (ed.) Aquatic Surface Chemistry, pp. 83–110. Wiley, New York (1987)Google Scholar
  43. Si, R., Flytzani-Stephanopoulos, M.: Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew. Chem. Int. Ed. 47, 2884–2887 (2008)CrossRefGoogle Scholar
  44. Song, X., et al.: Synthesis of CeO2-coated SiO2 nanoparticle and dispersion stability of its suspension. Mater. Chem. Phys. 110, 128–135 (2008)CrossRefGoogle Scholar
  45. Suphantharida, P., Osseo-Asare, K.: Cerium oxide slurries in CMP. Electrophoretic mobility and adsorption investigations of ceria/silicate interaction. J. Electrochem. Soc. 151, G658–G662 (2004)CrossRefGoogle Scholar
  46. van Riemsdijk, W.H., Bolt, G.H., Koopal, L.K., Blaakmeer, J.: Electrolyte adsorption on heterogenous surfaces: adsorption models. J. Colloid Interface Sci. 109, 219–228 (1986)CrossRefGoogle Scholar
  47. Wyckoff, R.W.G.: Crystal Structures, 1, pp. 239–444. Interscience Publishers, New York (1963)Google Scholar
  48. Xu, J., Li, G., Li, L.: CeO2 nanocrystals: seed-mediated synthesis and size control. Mater. Res. Bul. 43, 990–995 (2008)CrossRefGoogle Scholar
  49. Yates, D.E., Levine, S., Healy, T.W.: Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc. Faraday Trans. 1 70, 1807–1818 (1974)CrossRefGoogle Scholar
  50. Zarzycki, P., Rosso, K.M., Chatman, S., Preočanin, T., Kallay, N., Piasecki, W.: Theory, experiment and computer simulation of the electrostatic potential at crystal/electrolyte interfaces. Croat. Chem. Acta 83, 457–474 (2010)Google Scholar
  51. Zhang, C., Michaelidesa, A., Jenkins, S.J.: Theory of gold on ceria. Phys. Chem. Chem. Phys. 13, 22–33 (2011)CrossRefGoogle Scholar
  52. Žalac, S., Kallay, N.: Application of mass titration to the point of zero charge determination. J. Colloid Interface Sci. 149, 233–240 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Danijel Namjesnik
    • 1
  • Sanela Mutka
    • 2
  • Damir Iveković
    • 3
  • Andreja Gajović
    • 4
  • Marc Willinger
    • 5
  • Tajana Preočanin
    • 1
    Email author
  1. 1.Division of Physical Chemistry, Department of Chemistry, Faculty of ScienceUniversity of ZagrebZagrebCroatia
  2. 2.Pliva Croatia Ltd., Research and DevelopmentZagrebCroatia
  3. 3.Division of Chemistry and Biochemistry, Faculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia
  4. 4.Division of Materials PhysicsRuđer Bošković InstituteZagrebCroatia
  5. 5.Fritz-Haber-Institute der Max-Planck-GesellschaftBerlinGermany

Personalised recommendations