, Volume 22, Issue 2, pp 247–260 | Cite as

Synthesis, characterization and evaluation of porous polybenzimidazole materials for CO2 adsorption at high pressures

  • Ruh Ullah
  • Mert Atilhan
  • Ashar Diab
  • Erhan Deniz
  • Santiago Aparicio
  • Cafer T. Yavuz


Porous polybenzimidazole polymers have been under investigation for high and low pressure CO2 adsorption due to the well-built stability under high pressure and at various temperatures. Pressure swing and temperature swing processes like integrated gasification combined cycle require materials which can operate efficiently at high pressure and high temperature and can remove CO2. In this manuscript we report synthesis, characterization and evaluation of two polybenzimidazole materials (PBI-1 and PBI-2), which were prepared with two different solvents and different cross-linking agents by condensation techniques. Low and high pressure CO2 sorption characteristic of both the materials were evaluated at 273 and 298 K. Thermal gravimetric analysis showed high temperature stability up to 500 °C for the studied materials. PBI-1 has shown very good performance by adsorbing 3 times more (1.8025 mmolg−1 of CO2) than PBI-2 at 0 °C and at low pressures. Despite low surface area results obtained via BET techniques, at 50 bars PBI-1 adsorbed up to 6.08 mmolg−1 of CO2. Studied materials have shown flexible behavior under applied pressure that leads to so-called “gate-opening” adsorption behavior and it makes these materials promising adsorbents of CO2 at high pressures and it is discussed in the manuscript in detail.


Polybenzimidazole CO2 Gas separation High pressure 



This paper was made possible by the support of an NPRP grant (No: 5-499-1-088) from the Qatar National Research Fund. The statements made herein are solely the responsibility of the authors.


  1. Al-Khabbaz, M.A., Khunsupat, R., Jones, C.W.: Guanidinylated poly(allylamine) supported on mesoporous silica for CO2 capture from flue gas. Fuel (2014). doi: 10.1016/j.fuel.2013.12.018 Google Scholar
  2. Asensio, J.A., Borrós, S., Gómez-Romero, P.: Polymer electrolyte fuel cells based on phosphoric acid-impregnated poly(2,5-benzimidazole) membranes. J. Electrochem. Soc. 151, A304–A310 (2004)CrossRefGoogle Scholar
  3. Ashourirad, B., Sekizkardes, A.K., Altarawneh, S., El-Kaderi, H.M.: Exceptional gas adsorption properties by nitrogen-doped porous carbons derived from benzimidazole-linked polymers. Chem. Mater. 27, 1349–1358 (2015)CrossRefGoogle Scholar
  4. Ben, T., Ren, H., Ma, S., Cao, D., Lan, J., Jing, X., Wang, W., Xu, J., Deng, F., Simmons, J.M., Qiu, S., Zhu, G.: Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48, 9457–9460 (2009)CrossRefGoogle Scholar
  5. Bhadra, S., Kim, N.H., Choi, J.S., Rhee, K.Y., Lee, J.H.: Hyperbranched poly(benzimidazole-co-benzene) with honeycomb structure as a membrane for high-temperature proton-exchange membrane fuel cells. J. Power Sources 195, 2470–2477 (2010)CrossRefGoogle Scholar
  6. Bhavsar, R.S., Nahire, S.B., Kale, M.S., Patil, S.G., Aher, P.P., Bhavsar, R.A., Kharul, U.K.: Polybenzimidazoles based on 3,3′-diaminobenzidine and aliphatic dicarboxylic acids: synthesis and evaluation of physicochemical properties toward their applicability as proton exchange and gas separation membrane material. J. Appl. Polym. Sci. 120, 1090–1099 (2011)CrossRefGoogle Scholar
  7. Blok, K., Williams, R.H., Katofski, R.E., Hendricks, C.A.: Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery. Energy 22, 161–168 (1997)CrossRefGoogle Scholar
  8. Brooks, N.W., Duckett, R.A., Rose, J., Ward, I.M., Clements, J.: An NMR study of absorbed water in polybenzimidazole. Polymer 34, 4038–4042 (1993)CrossRefGoogle Scholar
  9. Cariou, R., Chirinos, J.J., Gibson, V.C., Jacobsen, G., Tomov, A.K., Britovsek, G.J.P., White, A.J.P.: The effect of the central donor in bis(benzimidazole)-based cobalt catalysts for the selective cis-1,4-polymerisation of butadiene. Dalton Trans. 39, 9039–9045 (2010)CrossRefGoogle Scholar
  10. Casco, M.E., Martinez, M., Silvestre, J., Rodriguez, F.: Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure. Carbon 67, 230–235 (2014)CrossRefGoogle Scholar
  11. Chen, Z., Deng, S., Wei, H., Wang, B., Huang, J., Yu, G.: Activated carbons and amine-modified materials for carbon dioxide capture: a review. Front. Environ. Sci. Eng. 7, 326–340 (2013)CrossRefGoogle Scholar
  12. Conti, F., Willbold, S., Mammi, S., Korte, C., Lehnert, W., Stolten, D.: Carbon NMR investigation of the polybenzimidazole-dimethylacetamide interactions in membranes for fuel cells. New J. Chem. 37, 152–156 (2013)CrossRefGoogle Scholar
  13. Dawson, R., Adams, D.J., Cooper, A.I.: Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem. Sci. 2, 1173–1177 (2011)CrossRefGoogle Scholar
  14. Du, N., Park, H.B., Robertson, G.P., Dal-Cin, M.M., Visser, T., Scoles, L., Guiver, M.D.: Polymer nanosieve membranes for CO2-capture applications. Nat. Mater. 10(5), 372–375 (2011)CrossRefGoogle Scholar
  15. Eftekhari, A.A., Van Der Kooi, H., Bruining, H.: Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy 45, 729–745 (2012)CrossRefGoogle Scholar
  16. Farla, J.M., Hendriks, C., Blok, K.: Carbon dioxide recovery from industrial processes. Clim. Change 29, 439–461 (1995)CrossRefGoogle Scholar
  17. Glier, J.C., Rubin, E.S.: Assessment of solid sorbents as a competitive post-combustion CO2 capture technology. Energy Procedia 37, 65–72 (2013)CrossRefGoogle Scholar
  18. Guenther, J., Wong, M., Sue, H.J., Bremmer, T., Blümel, J.: High-temperature steam-treatment of PBI, PEKK, and a PEKK-PBI Blend: a solid-state NMR and IR spectroscopic study. J. Appl. Polym. Sci. 128, 4395–4404 (2013)CrossRefGoogle Scholar
  19. Han, J.-H., Ryu, J.H., Lee, L.B.: Multi-objective optimization design of hydrogen infrastructures simultaneously considering economic cost, safety and CO2 emission. Chem. Eng. Res. Des. 91, 1427–1439 (2013)CrossRefGoogle Scholar
  20. Han, M., Zhang, G., Liu, Z., Wang, S., Li, M., Zhu, J., Li, H., Zhang, Y., Lew, C.M., Na, H.: Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells. J. Mater. Chem. 21, 2187–2193 (2011)CrossRefGoogle Scholar
  21. Han, S.H., Lee, J.E., Lee, K.J., Park, H.B., Lee, Y.M.: Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement. J. Membr. Sci. 357, 143–151 (2010)CrossRefGoogle Scholar
  22. He, H., Li, W., Lamson, M., Zhong, D., Konkolewicz, D., Hui, C.M., Yaccato, T.: Porous polymers prepared via high internal phase emulsion polymerization for reversible CO2 capture. Polymer 55, 385–394 (2014)CrossRefGoogle Scholar
  23. Iqbal, H.M.S., Bhowmik, S., Benedictus, R., Moon, J.B., Kim, C.G., Mourad, A.H.I.: Processing and characterization of space-durable high-performance polymeric nanocomposite. J. Thermophys. Heat Transfer 25, 87–95 (2011)CrossRefGoogle Scholar
  24. Jansen, D., Oudhuis, A.B.J., van Veen, H.M.: CO2 reduction potential of future coal gasification based power generation technologies. Energy Convers. Manag. 33, 365–372 (1992)CrossRefGoogle Scholar
  25. Jouanneau, J., Mercier, R., Gonon, L., Gebel, G.: Synthesis of sulfonated polybenzimidazoles from functionalized monomers: preparation of ionic conducting membranes. Macromolecules 40, 983–990 (2007)CrossRefGoogle Scholar
  26. Jung, J.Y., Karadas, S., Zulfiqar, S., Deniz, E., Aparicio, S., Atilhan, M., Yavuz, C.T., Han, S.M.: Limitations and high pressure behavior of MOF-5 for CO2 capture. Phys. Chem. Chem. Phys. 15, 14319–14327 (2013)CrossRefGoogle Scholar
  27. Kang, Y., Zou, J., Sun, Z., Wang, F., Zhu, H., Han, K., Yang, W., Song, H., Meng, Q.: Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells. Int. J. Hydrog. Energy 38, 6494–6502 (2013)CrossRefGoogle Scholar
  28. Karadas, F., Yavuz, C.T., Zulfiqar, S., Aparicio, S., Stucky, G.D., Atilhan, M.: CO2 adsorption studies on hydroxy metal carbonates M(CO3)x(OH)y (M = Zn, Zn–Mg, Mg, Mg–Cu, Cu, Ni, and Pb) at high pressures up to 175 bar. Langmuir 27, 10642–10647 (2011)CrossRefGoogle Scholar
  29. Ketzer, J.M., Iglesias, R., Einloft, S.: Reducing greenhouse gas emissions with CO2 capture and geological storage. In: Chen, W.-Y. (ed.) Handbook of climate change mitigation, pp. 1405–1440. Springer, US (2012)CrossRefGoogle Scholar
  30. Klaehn, J.R., Orme, C.J., Peterson, E.S., Stewart, F.F., Urban, J.M.: Chapter 13: high temperature gas separations using high performance polymers. In: Oyama, S.T., Susan, M.S.-W. (eds.) Membrane science and technology, pp. 295–307. Elsevier, New York (2011)Google Scholar
  31. Krishnan, G., Steele, D., O’Brien, K., Callahan, R., Berchtold, K., Figueroa, J.: Simulation of a process to capture CO2 from IGCC syngas using a high temperature PBI membrane. Energy Procedia 1, 4079–4088 (2009)CrossRefGoogle Scholar
  32. Krutka, H., Sjostrpm, S., Starns, T., Dillon, N., Silverman, R.: Post-combustion CO2 capture using solid sorbents: 1 MW Pilot Evaluation. Energy Procedia 37, 73–88 (2013)CrossRefGoogle Scholar
  33. Kumar, S., Cho, J.H., Moon, I.: Ionic liquid-amine blends and CO2BOLs: prospective solvents for natural gas sweetening and CO2 capture technology—A review. Int. J. Greenhouse Gas Control 20, 87–116 (2014)CrossRefGoogle Scholar
  34. Kumbharkar, S.C., Islam, M.N., Potrekar, R.A., Kharul, U.K.: Variation in acid moiety of polybenzimidazoles: investigation of physico-chemical properties towards their applicability as proton exchange and gas separation membrane materials. Polymer 50, 1403–1413 (2009)CrossRefGoogle Scholar
  35. Kumbharkar, S.C., Li, K.: Structurally modified polybenzimidazole hollow fibre membranes with enhanced gas permeation properties. J. Membr. Sci. 415–416, 793–800 (2012)CrossRefGoogle Scholar
  36. Kumbharkar, S.C., Liu, Y., Li, K.: High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation. J. Membr. Sci. 375, 231–240 (2011)CrossRefGoogle Scholar
  37. Li, J.R., Ma, Y., McCarthy, M.C., Sculley, J., Yu, J., Jeong, H.K., Balbuena, B., Zhou, H.C.: Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 255, 1791–1823 (2011)CrossRefGoogle Scholar
  38. Li, S., Shi, Y., Yang, Y., Cai, N.: Elevated pressure CO2 adsorption characteristics of promoted hydrotalcites for pre-combustion carbon capture. Energy Procedia 37, 2224–2231 (2013)CrossRefGoogle Scholar
  39. Liu, J., Thallapally, P.K., McGrail, B.P., Brown, D.R., Liu, J.: Progress in adsorption-based CO2 capture by metal–organic frameworks. Chem. Soc. Rev. 41, 2308–2322 (2012)CrossRefGoogle Scholar
  40. Lobato, J., Cañizares, P., Rdrigo, M.A., Linares, J.J., Ubeda, D., Pinar, F.J.: Study of the catalytic layer in polybenzimidazole-based high temperature PEMFC: effect of platinum content on the carbon support. Fuel Cells 10, 312–319 (2010)CrossRefGoogle Scholar
  41. Lu, W., Sculley, J.P., Yuan, D., Krishna, Z., Wei, Z., Zhou, H.C.: Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew. Chem. Int. Ed. 51, 7480–7484 (2012)CrossRefGoogle Scholar
  42. Markewitz, P., Kuckhinrichs, R., Leitner, W., Linseen, J., Zapp, R., Bongarts, R., Schreiber, A., Muller, T.E.: Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 5, 7281–7305 (2012)CrossRefGoogle Scholar
  43. Maroño, M., Torreiro, Y., Montenegro, L., Sámchez, J.: Lab-scale tests of different materials for the selection of suitable sorbents for CO2 capture with H2 production in IGCC processes. Fuel 116, 861–870 (2014)CrossRefGoogle Scholar
  44. Mulfort, K.L., Farha, O.K., Malliakas, C.D., Kanatzidis, M.G., Hupp, J.T.: An interpenetrated framework material with hysteretic CO2 uptake. Chem A Eur J 16, 276–281 (2010)CrossRefGoogle Scholar
  45. Munoz, D.M., Portugal, A.F., Lozano, A.E., de la Campa, J.G., de Abajo, J.: New liquid absorbents for the removal of CO2 from gas mixtures. Energy Environ. Sci. 2, 883–891 (2009)CrossRefGoogle Scholar
  46. Muradov, N.Z., Veziroǧlu, T.N.: From hydrocarbon to hydrogen–carbon to hydrogen economy. Int. J. Hydrogen Energy 30, 225–237 (2005)CrossRefGoogle Scholar
  47. Musto, P., Karasz, F.E., MacKnight, W.J.: Fourier transform infra-red spectroscopy on the thermo-oxidative degradation of polybenzimidazole and of a polybenzimidazole/polyetherimide blend. Polymer 34, 2934–2945 (1993)CrossRefGoogle Scholar
  48. O’Brien, K.C., Krishnan, G., Berchtold, K.A., Blum, S., Callahan, R., Johnson, W., Roberts, D.L., Steele, D., Byard, D., Figueroa, J.: Towards a pilot-scale membrane system for pre-combustion CO2 separation. Energy Procedia 1, 287–294 (2009)CrossRefGoogle Scholar
  49. Ogunlaja, A.S., Sautoy, C.D., Torto, N., Tshentu, Z.R.: Design, fabrication and evaluation of intelligent sulfone-selective polybenzimidazole nanofibers. Talanta 126, 61–72 (2014)CrossRefGoogle Scholar
  50. Patel, H.A., Hyun Je, S., Park, J., Chen, D.P., Jung, Y., Yavuz, C.T., Coskun, A.: Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. Nat Commun 4, 1357 (2013)CrossRefGoogle Scholar
  51. Rabbani, M.G., El-Kaderi, H.M.: Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chem. Mater. 24, 1511–1517 (2012a)CrossRefGoogle Scholar
  52. Rabbani, M.G., El-Kaderi, H.M.: Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake. Chem. Mater. 24(8), 1511–1517 (2012b)CrossRefGoogle Scholar
  53. Sannigrahi, A., Ghosh, S., Maity, S., Jana, J.: Structurally isomeric monomers directed copolymerization of polybenzimidazoles and their properties. Polymer 51, 5929–5941 (2010)CrossRefGoogle Scholar
  54. Sanz, R., Calleja, G., Arencibia, A., Sanz, E.S.: Development of high efficiency absorbents for CO2 capture based on a double-functionalization method of grafting and impregnation. J. Mater. Chem. A 1, 1956–1962 (2013)CrossRefGoogle Scholar
  55. Seema, H., Kemp, K.C., Le, N.H., Park, S.W., Chandra, V.: Highly selective CO2 capture by S-doped microporous carbon materials. Carbon 66, 320–326 (2014)CrossRefGoogle Scholar
  56. Sekizkardes, A.K., Altarawneh, S., Kahveci, Z., İslamoğlu, T., El-Kaderi, H.M.: Highly selective CO2 capture by triazine-based benzimidazole-linked polymers. Macromolecules 47, 8328–8334 (2014)CrossRefGoogle Scholar
  57. Su, J., Pu, H., Chang, Z., Wan, D.: A facile crosslinking method of polybenzimidazole with sulfonyl azide groups for proton conducting membranes. Polymer 53, 3587–3593 (2012)CrossRefGoogle Scholar
  58. Suryani, C.C.M., Liu, Y.L., Lee, Y.M.: Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells. J. Mater. Chem. 21, 7480–7486 (2011)CrossRefGoogle Scholar
  59. Tzimas, E., Peteves, S.D.: The impact of carbon sequestration on the production cost of electricity and hydrogen from coal and natural-gas technologies in Europe in the medium term. Energy 30, 2672–2689 (2005)CrossRefGoogle Scholar
  60. Valtcheva, I., Kumbharkar, S.C., Kim, F.C., Bhole, Y., Livingston, A.G.: Beyond polyimide: crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments. J. Membr. Sci. 457, 62–72 (2014)CrossRefGoogle Scholar
  61. Veselovskaya, J.V., Derevschikov, V.S., Kardash, T.Y., Stonkus, O.A., Trubitsina, T.A., Okunev, A.G.: Direct CO2 capture from ambient air using K2CO3/Al2O3 composite sorbent. Int. J. Greenhouse Gas Control 17, 332–340 (2013)CrossRefGoogle Scholar
  62. Vishnyakov, A., Ravikovitch, I., Neimark, A.V.: Molecular level models for CO2 sorption in nanopores. Langmuir 15, 8736–8742 (1999)CrossRefGoogle Scholar
  63. Wang, K.Y., Chung, T.S.: Polybenzimidazole nanofiltration hollow fiber for cephalexin separation. AIChE J. 52, 1363–1377 (2006)CrossRefGoogle Scholar
  64. Weber, J., Kreiuer, K.D., Maier, J., Thomas, A.: Proton conductivity enhancement by nanostructural control of poly(benzimidazole)-phosphoric acid adducts. Adv. Mater. 20, 2595–2598 (2008a)CrossRefGoogle Scholar
  65. Weber, J., Antonietti, M., Thomas, A.: Mesoporous poly(benzimidazole) networks via solvent mediated templating of hard spheres. Macromolecules 40, 1299–1304 (2007)CrossRefGoogle Scholar
  66. Weber, J., Antonietti, M., Thomas, A.: Microporous networks of high-performance polymers: elastic deformations and gas sorption properties. Macromolecules 41, 2880–2885 (2008b)CrossRefGoogle Scholar
  67. Xiang, Z., Zhou, X., Zhou, C., Zhong, S., He, X., Qin, C., Cao, D.: Covalent-organic polymers for carbon dioxide capture. J. Mater. Chem. 22(42), 22663–22669 (2012)CrossRefGoogle Scholar
  68. Xiao, L., Zhang, H., Scanlon, E., Ramanathan, L.S., Choe, E.W., Rogers, D., Apple, T., Benicewicz, B.C.: High-temperature polybenzimidazole fuel cell membranes via a sol: gel process. Chem. Mater. 17, 5328–5333 (2005)CrossRefGoogle Scholar
  69. Xu, C., Hedin, N.: Synthesis of microporous organic polymers with high CO2-over-N2 selectivity and CO2 adsorption. J. Mater. Chem. A 1, 3406–3414 (2013)CrossRefGoogle Scholar
  70. Yang, T., Chung, T.S.: High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. Int. J. Hydrogen Energy 38, 229–239 (2013)CrossRefGoogle Scholar
  71. Yang, T., Xiao, Y., Chung, T.S.: Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification. Energy Environ. Sci. 4, 4171–4180 (2011)CrossRefGoogle Scholar
  72. Yu, H., Tian, M., Shen, C., Wang, Z.: Facile preparation of porous polybenzimidazole networks and adsorption behavior of CO2 gas, organic and water vapors. Polym. Chem. 4, 961–968 (2013)CrossRefGoogle Scholar
  73. Zhang, M., Perry, Z., Park, J., Zhou, H.C.: Stable benzimidazole-incorporated porous polymer network for carbon capture with high efficiency and low cost. Polymer 55, 335–339 (2014)CrossRefGoogle Scholar
  74. Zhang, X.-J., Bian, N., Mao, L.J., Chen, Q., Fang, L., Qi, A.D., Han, B.H.: Porous polybenzimidazoles via template-free suzuki coupling polymerization: preparation, porosity, and heterogeneous catalytic activity in knoevenagel condensation reactions. Macromol. Chem. Phys. 213, 1575–1581 (2012)CrossRefGoogle Scholar
  75. Zhao, Y.-C., Cheng, Q.Y., Zhou, D., Wang, T., Han, B.H.: Preparation and characterization of triptycene-based microporous poly(benzimidazole) networks. J. Mater. Chem. 22, 11509–11514 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemical EngineeringQatar UniversityDohaQatar
  2. 2.Department of ChemistryUniversity of BurgosBurgosSpain
  3. 3.EEWS Graduate SchoolKorean Advanced Institute of Science and Technology (KAIST)DaejeonSouth Korea

Personalised recommendations