, Volume 22, Issue 1, pp 89–103 | Cite as

Removal of ronidazole and sulfamethoxazole from water solutions by adsorption on granular activated carbon: equilibrium and intraparticle diffusion mechanisms

  • A. I. Moral-Rodríguez
  • R. Leyva-Ramos
  • R. Ocampo-PérezEmail author
  • J. Mendoza-Barron
  • I. N. Serratos-Alvarez
  • J. J. Salazar-Rabago


The equilibrium and intraparticle diffusion of ronidazole (RNZ) and sulfamethoxazole (SMX) during the adsorption on granular activated carbon (GAC) from aqueous solution was investigated in this work. The solution pH, temperature, ionic strength and water matrix affected the adsorption capacity of GAC towards SMX, but no effect was observed for the adsorption of RNZ. This behavior was due to the different mechanism involved in the adsorption of both antibiotics. The adsorption capacity of GAC towards RNZ was greater than that towards SMX. Molecular computation allowed the estimation of the binding free energy and confirmed that the adsorption of RNZ was more favorable than the adsorption of SMX. The adsorption mechanism of both antibiotics is governed by π–π dispersive interactions, and molecular simulation demonstrated that the coulombic interactions did not affect, but the solvation and nonpolar interactions play a significant role on the adsorption of both antibiotics. The application of diffusional models revealed that the overall adsorption rate of both antibiotics is controlled by intraparticle diffusion. Moreover, the surface diffusion was more predominant than the pore volume diffusion. Besides, surface diffusion coefficient, Ds, for RNZ was not a function of the aqueous matrix, whereas Ds for SMX was highly dependent on the water matrix.


Adsorption mechanism Intraparticle diffusion mechanism Surface diffusion Antibiotics 



Radke–Prausnitz isotherm constant (L g−1)


Projected area of an antibiotic molecule (m2 molecule−1)


Radke–Prausnitz isotherm constant (mmol−β Lβ)


Concentration of antibiotic at equilibrium (mmol L−1)


Concentration of antibiotic in aqueous solution (mg L−1)


Predicted concentration of antibiotic in aqueous solution (mg L−1)


Initial concentration of antibiotic in aqueous solution (mg L−1)


Concentration of antibiotic within the particle at distance r (mg L−1)


Concentration of antibiotic at the external surface of the GAC particle at r = Rp (mg L−1)


Average pore diameter (nm)


Molecular diffusion coefficient at infinite dilution (cm2 s−1)


Effective pore volume diffusion coefficient (cm2 s−1)


Surface diffusion coefficient (cm2 s−1)


Constant of the Langmuir isotherm related to adsorption enthalpy (L mmol−1)


External mass transfer coefficient in liquid phase (cm s−1)


Average width of the micropores


Mass of adsorbent (g)


Number of experimental data


Avogadro’s number, 6.022 × 1023 (molecules mol−1)


Mass transport due to pore volume diffusion, mg cm−2 s−1


Mass transport due to surface diffusion, mg cm−2 s−1

\( N_{\text{AS,r}} \)

Radial average contribution of superficial contribution


Octanol–water partition coefficient


Acid dissociation constant


pH of Point Zero Charge


Uptake of antibiotic adsorbed (mmol g−1)


Uptake of antibiotic adsorbed predicted with the isotherm model (mmol g−1)


Maximum adsorption capacity of GAC towards an antibiotic (mmol g−1)


Radial distance (cm)


Radius of the particle (cm)


Universal gas law constant, 8.314 (J mol−1 K−1)


External surface area per mass of adsorbent (cm2 g−1)


Surface area (m2 g−1)


Temperature (K)


Volume of the solution in adsorber (mL)


Total pore volume (cm3 g−1)


Micropore volume (cm3 g−1)


Radke–Prausnitz isotherm constant


Void fraction of GAC particles


Density of adsorbent particles (g mL−1)


Tortuosity factor


Heat of adsorption (J mol−1)

% D

Average percentage of deviation

% SOc

Percentage of surface area occupied by antibiotic molecule adsorbed



This work was funded by Consejo Nacional de Ciencia y Tecnologia, CONACyT, Mexico, through Grants Nos. INFR-2012-01-188381 (R. Leyva-Ramos), CB-2012-02-182779 (R. Leyva-Ramos) and CB-2013-01 221757 (R. Ocampo-Perez).

Supplementary material

10450_2016_9758_MOESM1_ESM.docx (79 kb)
Supplementary material 1 (DOCX 79 kb)


  1. Acar, J., Röstel, B.: Antimicrobial resistance: an overview. Rev. Sci. Eech. Off. Int. Epiz. 20, 797–810 (2001)Google Scholar
  2. Baker, N.A., Sept, D., Joseph, S., Holst, M.J., McCammon, J.A.: Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. 98, 10037–10041 (2001)CrossRefGoogle Scholar
  3. Boehm, H.P.: Chemical identification of surface groups. Adv. Cat. 16, 179–274 (1966)CrossRefGoogle Scholar
  4. Brown, K.D., Kulis, J., Thomson, B., Chapman, T.H., Mawhinney, D.B.: Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci. Total Environ. 366, 772–783 (2006)CrossRefGoogle Scholar
  5. Çaliskan, E., Göktürk, S.: Adsorption characteristics of sulfamethoxazole and metronidazole on activated carbon. Sep. Sci. Technol. 45, 244–255 (2010)CrossRefGoogle Scholar
  6. Calisto, V., Ferreira, C.I.A., Oliveira, J.A.B.O., Otero, M., Esteves, V.I.: Adsorptive removal of pharmaceuticals from water by commercial and waste-based carbons. J. Environ. Manage. 152, 83–90 (2015)CrossRefGoogle Scholar
  7. Coughlin, R.W., Ezra, F.S.: Role of surface acidity in the adsorption of organic pollutants on the surface of carbon. Environ. Sci. Technol. 2, 291–297 (1968)CrossRefGoogle Scholar
  8. Díaz-Cruz, M.S., García-Galán, M.J., Barceló, D.: Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography-quadrupole linear ion trap-mass spectrometry. J. Chromatogr. A 1193, 50–59 (2008)CrossRefGoogle Scholar
  9. Do, D.D.: Adsorption Analysis: Equilibria and Kinetics, 1st edn. Imperial College Press, London (1998)Google Scholar
  10. Friedman, R.A., Honig, B.: A free energy analysis of nucleic acid base stacking in aqueous solution. Biophys. J. 69, 1528–1535 (1995)CrossRefGoogle Scholar
  11. Froment, G.F., Bischoff, K.B.: Chemical Reactor Analysis and Design, 2nd edn. Wiley, Singapore (1990)Google Scholar
  12. Furusawa, T., Smith, J.M.: Fluid-particle and intraparticle mass transport rates in slurries. Ind. Eng. Chem. Fundam. 12, 197–203 (1973)CrossRefGoogle Scholar
  13. Greenberg, A.E., Clesceri, L.S., Eaton, A.D.: Standard Methods for Examination of Water and Wastewater. Am. Public Health Assoc, Washington, DC (1992)Google Scholar
  14. Hernández-Mesa, M.: Desarrollo de un método MEKC para la determinación de 5-Nitroimidazoles en aguas de río. Tesis de Maestría, Universidad de Granada, España (2011)Google Scholar
  15. Hirsch, R., Ternes, T.A., Haberer, K., Mehlich, A., Ballwanz, F., Kratz, K.: Determination of antibiotics in different water compartments via liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. A 815, 213–223 (1998)CrossRefGoogle Scholar
  16. Homem, V., Santos, L.: Degradation and removal methods of antibiotics from aqueous matrices—a review. J. Environ. Manage. 92, 2304–2347 (2011)CrossRefGoogle Scholar
  17. Howard, P.H., Meylan, W.H.: Handbook of Physical Properties of Organic Chemical. Lewis Publishers/CRC Press, Boca Raton (1997). 2112 Google Scholar
  18. Humphrey, W., Dalke, A., Schulten, K.: VMD—visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)CrossRefGoogle Scholar
  19. Ji, L., Chen, W., Zheng, S., Xu, Z., Zhu, D.: Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir 25, 11608–11613 (2009)CrossRefGoogle Scholar
  20. Kümmerer, K.: Antibiotics in the aquatic environment—a review—Part I. Chemosphere 75, 417–434 (2009)CrossRefGoogle Scholar
  21. Lanz, R., Kuhnert, P., Boerlin, P.: Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Vet. Microbiol. 91, 73–84 (2003)CrossRefGoogle Scholar
  22. Leyva-Ramos, R., Geankoplis, C.J.: Diffusion in liquid-filled pores of activated carbon. I. Pore volume diffusion. Can. J. Chem. Eng. 72, 262–271 (1994)CrossRefGoogle Scholar
  23. Leyva-Ramos, R., Berber-Mendoza, M.S., Salazar-Rabago, J., Guerrero-Coronado, R.M., Mendoza-Barron, J.: Adsorption of lead(II) from aqueous solution onto several types of activated carbon fibers. Adsorption 17, 515–526 (2011)CrossRefGoogle Scholar
  24. Lian, F., Sun, B., Song, Z., Zhu, L., Qi, X., Xing, B.: Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole. Chem. Eng. J. 248, 128–134 (2014)CrossRefGoogle Scholar
  25. Lira-De León, K.I., García-Gutiérrez, P., Serratos, I.N., Palomera-Cárdenas, M., Figueroa-Corona, M.P., Campos-Peña, V., Meraz-Ríos, M.A.: Molecular mechanism of tau aggregation induced by anionic and cationic dyes. J. Alzheimers Dis. 35, 319–334 (2013)Google Scholar
  26. Méndez-Díaz, J.D., Prados-Joya, G., Rivera-Utrilla, J., Leyva-Ramos, R., Sánchez-Polo, M., Ferro-García, M.A., Medellín-Castillo, N.A.: Kinetic study of the adsorption of nitroimidazole antibiotics on activated carbons in aqueous phase. J. Colloid Interface Sci. 345, 481–490 (2010)CrossRefGoogle Scholar
  27. Minh, T.B., Leung, H.W., Loi, I.H., Chan, W.H., So, M.K., Mao, J.Q., Choi, D., Lam, J.C.W., Zheng, G., Martin, M., Lee, J.H.W., Lam, P.K.S., Richardson, B.J.: Antibiotics in the Hong Kong metropolitan area: ubiquitous distribution and fate in Victoria Harbour. Mar. Pollut. Bull. 58, 1052–1062 (2009)CrossRefGoogle Scholar
  28. Nam, S.W., Choi, D.J., Kim, S.K., Her, N., Zoh, K.D.: Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon. J. Hazard. Mater. 270, 144–152 (2014)CrossRefGoogle Scholar
  29. Nikolaou, A., Meric, S., Fatta, D.: Occurrence patterns of drugs in water and wastewater environments. Anal. Bioanal. Chem. 387, 1225–1234 (2007)CrossRefGoogle Scholar
  30. Nielsen, L., Biggs, M.J., Skinner, W., Bandosz, T.J.: The effects of activated carbon surface features on the reactive adsorption of carbamazepine and sulfamethoxazole. Carbon 80, 419–432 (2014)CrossRefGoogle Scholar
  31. Ocampo-Pérez, R., Abdel daiem, M.M., Rivera-Utrilla, J., Méndez-Díaz, J.D., Sánchez-Polo, M.: Modeling adsorption rate of organic micropollutants present in landfill leachates onto granular activated carbon. J. Colloid Interface Sci. 385, 174–182 (2012)CrossRefGoogle Scholar
  32. Ocampo-Pérez, R., Orellana-Garcia, F., Sánchez-Polo, M., Rivera-Utrilla, J., Velo-Gala, I., López-Ramón, M.V., Alvarez-Merino, M.A.: Nitroimidazoles adsorption on activated carbon cloth from aqueous solution. J. Colloid Interface Sci. 401, 116–124 (2013)CrossRefGoogle Scholar
  33. Ocampo-Perez, R., Leyva-Ramos, R., Alonso-Davila, P.A., Rivera-Utrilla, J., Sanchez-Polo, M.: Modeling adsorption rate of pyridine onto granular activated carbon. Chem. Eng. J. 165, 133–141 (2010)CrossRefGoogle Scholar
  34. Radovic, L.R., Moreno-Castilla, C., Rivera-Utrilla, J.: Carbon materials as adsorbents in aqueous solutions. Chem. Phys. Carbon 27, 227–405 (2000)Google Scholar
  35. Reid, R.C., Prausnitz, J.M., Poiling, B.E.: Properties of Gases and Liquids, 4th edn. Mc. Graw-Hill, New York (1987)Google Scholar
  36. Rivera-Utrilla, J., Prados-Joya, G., Sánchez-Polo, M., Ferro-García, M.A., Bautista-Toledo, I.: Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. J. Hazard. Mater. 170, 298–305 (2009)CrossRefGoogle Scholar
  37. Ruthven, D.W.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)Google Scholar
  38. Santos, E.J.G., Kaxiras, E.: Electric-field dependence of the effective dielectric constant in graphene. Nano Lett. 13, 898–902 (2013)CrossRefGoogle Scholar
  39. Stoeckli F (1995) Porosity in Carbons: Characterization and Applications. In: J. Patrick (ed.), pp. 67–97. Edward Arnold, London (1995)Google Scholar
  40. Susuki, M.: Adsorption Engineering. Elsevier Science Publishers, New York (1990)Google Scholar
  41. Trott, O., Olson, A.J.: Software news and update AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010)Google Scholar
  42. Wang, C., Li, H., Liao, S., Zheng, H., Wang, Z., Pan, B., Xing, B.: Coadsorption, desorption hysteresis and sorption thermodynamics of sulfamethoxazole and carbamazepine on graphene oxide and graphite. Carbon 65, 243–251 (2013)CrossRefGoogle Scholar
  43. Watkinson, A.J., Murby, E.J., Costanzo, S.D.: Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Res. 41, 4164–4176 (2007)CrossRefGoogle Scholar
  44. Watkinson, A.J., Murby, E.J., Kolpin, D.W., Costanzo, S.D.: The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Sci. Total Environ. 407, 2711–2723 (2009)CrossRefGoogle Scholar
  45. Xu, W., Zhang, G., Zou, S., Li, X., Liu, Y.: Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environ. Pollut. 145, 672–679 (2007)CrossRefGoogle Scholar
  46. Yang, S., Carlson, K.H.: Solid-phase extraction-high-performance liquid chromatography-ion trap mass spectrometry for analysis of trace concentrations of macrolide antibiotics in natural and waste water matrices. J. Chromatogr. A 1038, 141–155 (2004)CrossRefGoogle Scholar
  47. Zuccato, E., Castiglioni, S., Fanelli, R.: Identification of the drugs for human use contaminating the Italian aquatic environment. J. Hazard. Mater. 122, 205–209 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. I. Moral-Rodríguez
    • 1
  • R. Leyva-Ramos
    • 1
  • R. Ocampo-Pérez
    • 1
    Email author
  • J. Mendoza-Barron
    • 1
  • I. N. Serratos-Alvarez
    • 2
  • J. J. Salazar-Rabago
    • 1
  1. 1.Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaIztapalapaMexico

Personalised recommendations