Adsorption

, Volume 22, Issue 4–6, pp 609–619 | Cite as

New developments on carbon dioxide capture using amine-impregnated silicas

  • E. S. Sanz-Pérez
  • A. Arencibia
  • R. Sanz
  • G. Calleja
Article

Abstract

A series of representative amines were impregnated on SBA-15 mesostructured silica. Ethylenediamine, 1,6-diaminohexane, hexamethyleneimine, tetraethylenepentamine (TEPA), branched polyethyleneimine (PEI), piperazine (PZ), and 4-amino-2-hydroxy-6-methylpyrimidine (PD) were used as impregnating agents. Impregnated materials were characterized by N2 adsorption–desorption, elemental analysis and CO2 adsorption–desorption. CO2 analyses were performed at 45 °C with the aim of reproducing industrial post-combustion conditions. Relevant differences in CO2 uptake were assigned to the kind of amino group used and their position in the molecule (i.e., primary, secondary or tertiary, isolated, close to aromatic rings…). PEI, TEPA and PZ were also impregnated over SBA-AP, i.e., SBA-15 grafted with aminopropyl-trimethoxysilane (AP), by using a double functionalization method. CO2 uptake and amine efficiency (CO2/N molar ratio) were found to depend on the nature of the impregnating molecule. Improved stability and CO2 capture properties were obtained for samples impregnated over SBA-AP, achieving a CO2 adsorption capacity of 104 mg CO2/g ads (2.4 mmol CO2/g ads) for SBA-AP–TEPA (45 °C, 1 bar), with an amine efficiency of 0.32 mol CO2/mol N (SBA-AP–TEPA, 45 °C, 1 bar).

Keywords

SBA-15 Impregnation CO2 capture Double-functionalization Silica PEI TEPA Adsorption mechanism 

References

  1. Ahmadalinezhad, A., Tailor, R., Sayari, A.: Molecular-level insights into the oxidative degradation of grafted amines. Chem. Eur. J. 19, 10543–10550 (2013)CrossRefGoogle Scholar
  2. Bollini, P., Choi, S., Drese, J.H., Jones, C.W.: Oxidative degradation of aminosilica adsorbents relevant to postcombustion CO2 capture. Energy Fuels 25, 2416–2425 (2011a)CrossRefGoogle Scholar
  3. Bollini, P., Didas, S.A., Jones, C.W.: Amine-oxide hybrid materials for acid gas separations. J. Mater. Chem. 21, 15100–15120 (2011b)CrossRefGoogle Scholar
  4. Calleja, G., Sanz, R., Arencibia, A., Sanz-Pérez, E.S.: Influence of drying conditions on amine-functionalized SBA-15 as adsorbent of CO2. Top. Catal. 54, 135–145 (2011)CrossRefGoogle Scholar
  5. Caplow, M.: Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc. 90, 6795–6803 (1968)CrossRefGoogle Scholar
  6. Chaikittisilp, W., Khunsupat, R., Chen, T.T., Jones, C.W.: Poly(allylamine)–mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air. Ind. Eng. Chem. Res. 50, 14203–14210 (2011)CrossRefGoogle Scholar
  7. Chen, C., Yang, S.-T., Ahn, W.-S., Ryoo, R.: Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. Chem. Commun. (24), 3627–3629 (2009)Google Scholar
  8. Chen, Z., Deng, S., Wei, H., Wang, B., Huang, J., Yu, G.: Polyethylenimine-impregnated resin for high CO2 adsorption: an efficient adsorbent for CO2 capture from simulated flue gas and ambient air. ACS Appl. Mater. Interfaces 5, 6937–6945 (2013)CrossRefGoogle Scholar
  9. Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2, 796–854 (2009)CrossRefGoogle Scholar
  10. Choi, S., Gray, M.L., Jones, C.W.: Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air. ChemSusChem 4, 628–635 (2011)CrossRefGoogle Scholar
  11. Danckwerts, P.V.: The reaction of CO2 with ethanolamines. Chem. Eng. Sci. 34, 443–446 (1979)CrossRefGoogle Scholar
  12. Donaldson, T.L., Nguyen, Y.N.: Carbon dioxide reaction kinetics and transport in aqueous amine membranes. Ind. Eng. Chem. Fundam. 19, 260–266 (1980)CrossRefGoogle Scholar
  13. Filburn, T., Helble, J.J., Weiss, R.A.: Development of supported ethanolamines and modified ethanolamines for CO2 capture. Ind. Eng. Chem. Res. 44, 1542–1546 (2005)CrossRefGoogle Scholar
  14. Franchi, R., Harlick, P.J.E., Sayari, A.: A high capacity water tolerant adsorbent for CO2: diethanolamine supported on pore-expanded MCM-41. Stud. Surf. Sci. Catal. 156, 879–886 (2005)CrossRefGoogle Scholar
  15. Gaikwad, R., Boward, W.L., DePriest, W.: Wet flue gas desulfurization technology evaluation. National Lime Association (2003). Project Number 11311-000. http://www.graymont.com/sites/default/files/pdf/tech_paper/wet_flue_gas_desulfurization_technology_evaluation_0_1.pdf
  16. Gargiulo, N., Verlotta, A., Peluso, A., Aprea, P., Caputo, D.: Modeling the performances of a CO2 adsorbent based on polyethylenimine-functionalized macro-/mesoporous silica monoliths. Microporous Mesoporous Mater. 215, 1–7 (2015)CrossRefGoogle Scholar
  17. Gebald, C., Wurzbacher, J.A., Tingaut, P., Steinfeld, A.: Stability of amine-functionalized cellulose during temperature-vacuum-swing cycling for CO2 capture from air. Environ. Sci. Technol. 47, 10063–10070 (2013)CrossRefGoogle Scholar
  18. Gibson, J.A.A., Gromov, A.V., Brandani, S., Campbell, E.E.B.: The effect of pore structure on the CO2 adsorption efficiency of polyamine impregnated porous carbons. Microporous Mesoporous Mater. 208, 129–139 (2015)CrossRefGoogle Scholar
  19. Goeppert, A., Meth, S., Prakash, G.K.S., Olah, G.A.: Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energy Environ. Sci. 3, 1949–1960 (2010)CrossRefGoogle Scholar
  20. Goeppert, A., Czaun, M., May, R.B., Surya Prakash, G.K., Olah, G.A., Narayanan, S.R.: Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. J. Am. Chem. Soc. 133, 20164–20167 (2011)CrossRefGoogle Scholar
  21. Heydari-Gorji, A., Belmabkhout, Y., Sayari, A.: Polyethylenimine-impregnated mesoporous silica: effect of amine loading and surface alkyl chains on CO2 adsorption. Langmuir 27, 12411–12416 (2011)CrossRefGoogle Scholar
  22. Hicks, J.C., Drese, J.H., Fauth, D.J., Gray, M.L., Qi, G., Jones, C.W.: Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. J. Am. Chem. Soc. 130, 2902–2903 (2008)CrossRefGoogle Scholar
  23. Jiao, J., Lyu, P.P., Qi, L., Dan, S.M., Wang, L.: CO2 capture of amine loaded on worm-hole mesostructured silica. Huaxue Gongcheng/Chem. Eng. 43, 25–29 (2015)Google Scholar
  24. Jo, D.H., Lee, C.H., Jung, H., Jeon, S., Kim, S.H.: Effect of amine surface density on CO2 adsorption behaviors of amine-functionalized polystyrene. Bull. Chem. Soc. Jpn. 88, 1317–1322 (2015)CrossRefGoogle Scholar
  25. Kim, H., Moon, J., Park, J.: A hyperbranched poly(ethyleneimine) grown on surfaces. J. Colloid Interface Sci. 227, 247–249 (2000)CrossRefGoogle Scholar
  26. Lakhi, K.S., Baskar, A.V., Zaidi, J.S.M., Al-Deyab, S.S., El-Newehy, M., Choy, J.-H., Vinu, A.: Morphological control of mesoporous CN based hybrid materials and their excellent CO2 adsorption capacity. RSC Adv. 5, 40183–40192 (2015)CrossRefGoogle Scholar
  27. Leal, O., Bolívar, C., Ovalles, C., García, J.J., Espidel, Y.: Reversible adsorption of carbon dioxide on amine surface-bonded silica gel. Inorg. Chim. Acta. 240, 183–189 (1995)CrossRefGoogle Scholar
  28. Lee, S.-Y., Park, S.-J.: A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem. 23, 1–11 (2014)CrossRefGoogle Scholar
  29. Lehman, J.W.: Operational Organic Chemistry, 4th edn. Pearson Prentice Hall, Upper Saddle River (2009)Google Scholar
  30. Li, K., Jiang, J., Tian, S., Yan, F., Chen, X.: Polyethyleneimine–nano silica composites: a low-cost and promising adsorbent for CO2 capture. J. Mater. Chem. A. 3, 2166–2175 (2015)CrossRefGoogle Scholar
  31. Maroto-Valer, M.M., Tang, Z., Zhang, Y.: CO2 capture by activated and impregnated anthracites. Fuel Process. Technol. 86, 1487–1502 (2005)CrossRefGoogle Scholar
  32. Mello, M.R., Phanon, D., Silveira, G.Q., Llewellyn, P.L., Ronconi, C.M.: Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous Mesoporous Mater. 143, 174–179 (2011)CrossRefGoogle Scholar
  33. Metz, B., Davidson, O., de Coninck, H.C., Loos, M., Meyer, L.A. (eds): IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2005)Google Scholar
  34. National Oceanic and Atmospheric Administration Earth System Research Laboratory: Mauna Loa CO2 Annual Mean Data. ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_annmean_mlo.txt. Accessed Nov 17 2015
  35. Olea, A., Sanz-Pérez, E.S., Arencibia, A., Sanz, R., Calleja, G.: Amino-functionalized pore-expanded SBA-15 for CO2 adsorption. Adsorption 19, 589–600 (2013)CrossRefGoogle Scholar
  36. Olivares-Marín, M., Sanz-Pérez, E.S., Wong, M.S., Maroto-Valer, M.M.: Development of regenerable sorbents from abundant wastes for capture of CO2. Energy Procedia 4, 1118–1124 (2011)CrossRefGoogle Scholar
  37. Plaza, M.G., Pevida, C., Arenillas, A., Rubiera, F., Pis, J.J.: CO2 capture by adsorption with nitrogen enriched carbons. Fuel 86, 2204–2212 (2007)CrossRefGoogle Scholar
  38. Rezaei, F., Lively, R.P., Labreche, Y., Chen, G., Fan, Y., Koros, W.J., Jones, C.W.: Aminosilane-grafted polymer/silica hollow fiber adsorbents for CO2 capture from flue gas. ACS Appl. Mater. Interfaces 5, 3921–3931 (2013)CrossRefGoogle Scholar
  39. Rosenholm, J.M., Penninkangas, A., Lindén, M.: Amino-functionalization of large-pore mesoscopically ordered silica by a one-step hyperbranching polymerization of a surface-grown polyethyleneimine. Chem. Commun. (37), 3909–3911 (2006). doi: 10.1039/b607886a
  40. Sakwa-Novak, M.A., Holewinski, A., Hoyt, C.B., Yoo, C.-J., Chai, S.-H., Dai, S., Jones, C.W.: Probing the role of Zr addition versus textural properties in enhancement of CO2 adsorption performance in silica/PEI composite sorbents. Langmuir 31, 9356–9365 (2015)CrossRefGoogle Scholar
  41. Samanta, A., Zhao, A., Shimizu, G.K.H., Sarkar, P., Gupta, R.: Post-combustion CO2 capture using solid sorbents: a review. Ind. Eng. Chem. Res. 51, 1438–1463 (2012)CrossRefGoogle Scholar
  42. Sánchez-Vicente, Y., Stevens, L.A., Pando, C., Torralvo, M.J., Snape, C.E., Drage, T.C., Cabañas, A.: A new sustainable route in supercritical CO2 to functionalize silica SBA-15 with 3-aminopropyltrimethoxysilane as material for carbon capture. Chem. Eng. J. 264, 886–898 (2015)CrossRefGoogle Scholar
  43. Sanz, R., Calleja, G., Arencibia, A.: Applied surface science CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15. Appl. Surf. Sci. 256, 5323–5328 (2010a)CrossRefGoogle Scholar
  44. Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E.S.: CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15. Appl. Surf. Sci. 256, 5323–5328 (2010b)CrossRefGoogle Scholar
  45. Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E.S.: Amino functionalized mesostructured SBA-15 silica for CO2 capture: exploring the relation between the adsorption capacity and the distribution of amino groups by TEM. Microporous Mesoporous Mater. 158, 309–317 (2012)CrossRefGoogle Scholar
  46. Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E.S.: Development of high efficiency adsorbents for CO2 capture based on a double-functionalization method of grafting and impregnation. J. Mater. Chem. A 1, 1956–1962 (2013a)CrossRefGoogle Scholar
  47. Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E.S.: CO2 uptake and adsorption kinetics of pore-expanded SBA-15 double-functionalized with amino groups. Energy Fuels 27, 7637–7644 (2013b)CrossRefGoogle Scholar
  48. Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E.S.: CO2 capture with pore-expanded MCM-41 silica modified with amino groups by double functionalization. Microporous Mesoporous Mater. 209, 165–171 (2015)CrossRefGoogle Scholar
  49. Sanz-Pérez, E.S., Olivares-Marín, M., Arencibia, A., Sanz, R., Calleja, G., Maroto-Valer, M.M.: CO2 adsorption performance of amino-functionalized SBA-15 under post-combustion conditions. Int. J. Greenh. Gas Control 17, 366–375 (2013)CrossRefGoogle Scholar
  50. Saytzeff, A.: Zur Kenntniss der Reihenfolge der Analgerung und Ausscheidung der Jodwasserstoffelemente in organischen Verbindungen. Justus Liebig’s Ann. der Chem. 179, 296–301 (1875)CrossRefGoogle Scholar
  51. Serna-Guerrero, R., Belmabkhout, Y., Sayari, A.: Modeling CO2 adsorption on amine-functionalized mesoporous silica: 1. A semi-empirical equilibrium model. Chem. Eng. J. 161, 173–181 (2010)CrossRefGoogle Scholar
  52. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquérol, J., Simieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  53. Smith, M.B.: March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th edn. John Wiley & Sons Inc. Hoboken, New Jersey (2013)Google Scholar
  54. Son, W.-J., Choi, J.-S., Ahn, W.-S.: Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater. 113, 31–40 (2008)CrossRefGoogle Scholar
  55. Vilarrasa-Garcia, E., Moya, E.M.O., Cecilia, J.A., Cavalcante, C.L., Jiménez-Jiménez, J., Azevedo, D.C.S., Rodríguez-Castellón, E.: CO2 adsorption on amine modified mesoporous silicas: effect of the progressive disorder of the honeycomb arrangement. Microporous Mesoporous Mater. 209, 172–183 (2015)CrossRefGoogle Scholar
  56. Wang, X., Schwartz, V., Clark, J.C., Ma, X., Overbury, S.H., Xu, X., Song, C.: Infrared study of CO2 sorption over “Molecular Basket” sorbent consisting of polyethylenimine-modified mesoporous molecular sieve. J. Phys. Chem. C 113, 7260–7268 (2009)CrossRefGoogle Scholar
  57. Wang, X., Li, H., Liu, H., Hou, X.: AS-synthesized mesoporous silica MSU-1 modified with tetraethylenepentamine for CO2 adsorption. Microporous Mesoporous Mater. 142, 564–569 (2011)CrossRefGoogle Scholar
  58. Wang, X., Ma, X., Schwartz, V., Clark, J.C., Overbury, S.H., Zhao, S., Xu, X., Song, C.: A solid molecular basket sorbent for CO2 capture from gas streams with low CO2 concentration under ambient conditions. Phys. Chem. Chem. Phys. 14, 1485–1492 (2012)CrossRefGoogle Scholar
  59. Wang, W., Wang, X., Song, C., Wei, X., Ding, J., Xiao, J.: Sulfuric acid modified bentonite as the support of tetraethylenepentamine for CO2 capture. Energy Fuels 27, 1538–1546 (2013)CrossRefGoogle Scholar
  60. Wang, J., Huang, L., Yang, R., Zhang, Z., Wu, J., Gao, Y., Wang, Q., O’Hare, D., Zhong, Z.: Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ. Sci. 7, 3478–3518 (2014)CrossRefGoogle Scholar
  61. Xu, X., Song, C., Andresen, J.M., Miller, B.G., Scaroni, A.W.: Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 16, 1463–1469 (2002)CrossRefGoogle Scholar
  62. Yan, X., Zhang, L., Zhang, Y., Yang, G., Yan, Z.: Amine-modified SBA-15: effect of pore structure on the performance for CO2 capture. Ind. Eng. Chem. Res. 50, 3220–3226 (2011)Google Scholar
  63. Yaws, C.L.: The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals, 2nd Ed. Gulf Professional Publishing (Elsevier). Oxford, UK; Waltham, MA (2015)Google Scholar
  64. Young, P.D., Notestein, J.M.: The role of amine surface density in carbon dioxide adsorption on functionalized mixed oxide surfaces. ChemSusChem 4, 1671–1678 (2011)CrossRefGoogle Scholar
  65. Yue, M.B., Chun, Y., Cao, Y., Dong, X., Zhu, J.H.: CO2 capture by as-prepared SBA-15 with an occluded organic template. Adv. Funct. Mater. 16, 1717–1722 (2006)CrossRefGoogle Scholar
  66. Yue, M.B., Sun, L.B., Cao, Y., Wang, Y., Wang, Z.J., Zhu, J.H.: Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine. Chem. Eur. J. 14, 3442–3451 (2008)CrossRefGoogle Scholar
  67. Zeng, W., Bai, H.: Swelling-agent-free synthesis of rice husk derived silica materials with large mesopores for efficient CO2 capture. Chem. Eng. J. 251, 1–9 (2014)CrossRefGoogle Scholar
  68. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G., Chmelka, B., Stucky, G.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998a)CrossRefGoogle Scholar
  69. Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., Stucky, G.D.: Tri-, tetra-, and octablock copolymer and nonionic surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998b)CrossRefGoogle Scholar
  70. Zhao, Y., Shen, Y., Bai, L., Ni, S.: Carbon dioxide adsorption on polyacrylamide-impregnated silica gel and breakthrough modeling. Appl. Surf. Sci. 261, 708–716 (2012)CrossRefGoogle Scholar
  71. Zhao, Y., Liu, X., Han, Y.: Microporous carbonaceous adsorbents for CO2 separation via selective adsorption. RSC Adv. 5, 30310–30330 (2015)CrossRefGoogle Scholar
  72. Zheng, F., Tran, D.N., Busche, B.J., Fryxell, G.E., Addleman, R.S., Zemanian, T.S., Aardahl, C.L.: Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent. Ind. Eng. Chem. Res. 44, 3099–3105 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • E. S. Sanz-Pérez
    • 1
  • A. Arencibia
    • 1
  • R. Sanz
    • 1
  • G. Calleja
    • 1
  1. 1.Department of Chemical and Energy Technology, ESCETUniversidad Rey Juan CarlosMóstolesSpain

Personalised recommendations