Adsorption

, Volume 20, Issue 7, pp 889–897 | Cite as

Adsorption of argon on mesoporous anodic alumina

Article

Abstract

We have studied the adsorption of Ar on regular, highly-ordered alumina membranes made by anodization. The straight, non-interconnected pores have nominal diameters of 31 and 83 nm, with a relative dispersion better than 5 % in the pore size. Adsorption isotherms taken on bare membranes with pores of 83 nm present two distinct hysteresis loops. This is found to be a consequence of the fabrication procedure that yields a central circular region formed by open pores surrounded by an outer ring with closed bottom pores of smaller size, about 40 nm. For the membrane with pores of 31 nm, the difference between these pores is much smaller, about 2 nm, and this explains why the isotherms on these membranes show a single hysteresis loop as expected. Detailed real space analysis of the membranes by electron microscopy confirms the adsorption conclusions.

Keywords

Adsorption isotherms Anodic aluminum oxide (AAO) Porous materials Template 

Notes

Acknowledgments

This work is supported by KRISS project “Anodization Research Laboratory (KRISS-2013-13011082)”.

References

  1. Asefa, T., MacLachlan, M.J., Coombs, N., Ozin, G.A.: Periodic mesoporous organosilicas with organic groups inside the channel walls. Nat. Nanotechnol. 402, 867–871 (1999)Google Scholar
  2. Bang, J., Kim, S.H., Drockenmuller, E., Misner, M.J., Russell, T.P., Hawker, C.J.: Defect-free nanoporous thin films from ABC triblock copolymers. J. Am. Chem. Soc. 128, 7622–7629 (2006)CrossRefGoogle Scholar
  3. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992)CrossRefGoogle Scholar
  4. Bruschi, L., Mistura, G., Park, S. J., Lee, W., Do, D.D.: Adsorption on alumina pores open at one and at both ends (2014, submitted)Google Scholar
  5. Bruschi, L., Mistura, G.: Adsorption within and on regularly patterned substrates. J. Low Temp. Phys. 157, 206–220 (2009)CrossRefGoogle Scholar
  6. Bruschi, L., Carlin, A., Mistura, G.: Wetting on a geometrically structured substrate. J. Chem. Phys. 115, 6200–6203 (2001)Google Scholar
  7. Bruschi, L., Carlin, A., Parry, A.O., Mistura, G.: Crossover effects in the wetting of adsorbed films in linear wedges. Phys. Rev. E 68, 021606 (2003)CrossRefGoogle Scholar
  8. Bruschi, L., Fois, G., Mistura, G., Sklarek, K., Hillebrand, R., Steinhart, M., Gösele, U.: Adsorption hysteresis in self-ordered nanoporous alumina. Langmuir 24, 10936–10941 (2008)CrossRefGoogle Scholar
  9. Bruschi, L., Mistura, G., Liu, L., Lee, W., Gösele, U., Coasne, B.: Capillary condensation and evaporation in alumina nanopores with controlled modulations. Langmuir 26, 11894–11898 (2010)CrossRefGoogle Scholar
  10. Casanova, F., Chiang, C.E., Li, C.P., Roshchin, I.V., Ruminski, A.M., Sailor, M.J., Schuller, I.K.: Gas aadsorption and capillary condensation in nanoporous alumina films. Nanotechnology 19, 315709 (2008)CrossRefGoogle Scholar
  11. Casanova, F., Chiang, C.E., Ruminski, A.M., Sailor, M.J., Schuller, I.K.: Controlling the role of nanopore morphology in capillary condensation. Langmuir 28, 6832–6838 (2012)CrossRefGoogle Scholar
  12. Esparza, J.M., Ojeda, M.L., Campero, A., Dominguez, A., Kornhauser, I., Rojas, F., Vidales, A.M., Lopez, R.H., Zgrablich, G.: N2 sorption scanning behavior of SBA–15 porous substrates. Colloids Surf. A 241, 35–45 (2004)CrossRefGoogle Scholar
  13. Evans, R., Marconi, U.M.B., Tarazona, P.: Capillary condensation and adsorption in cylindrical and slit–like pores. J. Chem. Soc. Faraday Trans. 82, 1763–1787 (1986)CrossRefGoogle Scholar
  14. Everett, D.H.: In: Flood, E. A. (ed.) The Solid Gas Interface, vol. 2. Marcel Dekker, New York (1967)Google Scholar
  15. Fan, C., Do, D.D., Nicholson, D.: On the existence of a hysteresis loop in open and closed end pores. Mol. Simul. (2014). doi:10.1080/08927022.2013.869805 Google Scholar
  16. Gelb, L.D.: The Ins and Outs of Capillary Condensation in Cylindrical Pores. Mol. Phys. 100, 2049–2057 (2002)CrossRefGoogle Scholar
  17. Gregg, S.J., Sing, K.S.W.: Adsorption, Surface Area and Porosity. Academic Press, New York (1982)Google Scholar
  18. Grosman, A., Ortega, C.: Nature of capillary condensation and evaporation processes in ordered porous materials. Langmuir 21, 10515–10521 (2005)CrossRefGoogle Scholar
  19. Grosmann, A., Ortega, C.: Cavitation in metastable fluids confined to linear mesopores. Langmuir 27, 2364–2374 (2011)CrossRefGoogle Scholar
  20. Han, H., Park, S.J., Jang, J.S., Ryu, H., Kim, K.J., Baik, S., Lee, W.: In situ determination of the pore opening point during wet–chemical etching of the barrier layer of porous anodic aluminum oxide: nonuniform impurity distribution in anodic oxide. ACS Appl. Mater. Interfaces 5, 3441–3448 (2013)CrossRefGoogle Scholar
  21. Hoa, M.L.K., Lu, M., Zhang, Y.: Preparation of porous materials with ordered hole structure. Adv. Colloid. Interface. Sci. 121, 9–23 (2006)CrossRefGoogle Scholar
  22. Kruk, M., Jaroniec, M.: Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 13, 3169–3183 (2011)CrossRefGoogle Scholar
  23. Kruk, M., Jaroniec, M., Ko, C.H., Ryoo, R.: Characterization of the Porous Structure of SBA–15. Chem. Mater. 12, 1961–1968 (2000)CrossRefGoogle Scholar
  24. Lee, W., Kim, J.C.: Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization. Nanotechnology 21, 485304 (2010)CrossRefGoogle Scholar
  25. Lee, W., Park, S.-J.: Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev. 114, 7487–7556 (2014)CrossRefGoogle Scholar
  26. Lee, W., Ji, R., Gösele, U., Nielsch, K.: Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 5, 741–747 (2006)CrossRefGoogle Scholar
  27. Lee, W., Han, H., Lotnyk, A., Schubert, M.A., Senz, S., Alexe, M., Hesse, D., Baik, S., Gösele, U.: Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb Inch−2 density. Nat. Nanotechnol. 3, 402–407 (2008a)CrossRefGoogle Scholar
  28. Lee, W., Schwirn, K., Steinhart, M., Pippel, E., Scholz, R., Gösele, U.: Structural engineering of nanoporous anodic aluminum oxide by pulse anodization of aluminum. Nat. Nanotechnol. 3, 234–239 (2008b)CrossRefGoogle Scholar
  29. Marconi, U.B.M., van Swol, F.: Microscopic model for hysteresis and phase equilibria of fluids confined between parallel plates. Phys. Rev. A 39, 4109–4116 (1989)CrossRefGoogle Scholar
  30. Masuda, H., Fukuda, K.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995)CrossRefGoogle Scholar
  31. Mistura, G., Pozzato, A., Bruschi, L., Grenci, M., Tormen, M.: Continuous adsorption in highly ordered porous matrices made by nanolithography. Nat. Commun. 4, 2966 (2013)CrossRefGoogle Scholar
  32. Morishige, K., Ito, M.: Capillary condensation of nitrogen in MCM–41 and SBA–15. J. Chem. Phys. 117, 8036–8041 (2002)CrossRefGoogle Scholar
  33. Nguyen, P.T.M., Do, D.D., Nicholson, D.: On the irreversibility of the adsorption isotherm in a closed–end pore. Langmuir 29, 2927–2934 (2013)CrossRefGoogle Scholar
  34. Rasband, W.: Image J, released 1.36b; NIH: USA, 2006. (public domain, http://reb.info.nih.gov/ij/)
  35. Rascón, C., Parry, A.O., Nürnberg, R., Pozzato, A., Tormen, M., Bruschi, L., Mistura, G.: The order of condensation in capillary grooves. J. Phys.: Condens. Matter 25, 192101 (2013)Google Scholar
  36. Sarkisov, L., Monson, P.A.: Modeling of adsorption and desorption in pores of simple geometry using molecular dynamics. Langmuir 17, 7600–7604 (2001)CrossRefGoogle Scholar
  37. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  38. Stein, A.: Sphere Templating Methods for Periodic Porous Solids. Microporous Mesoporous Mater. 44, 227–239 (2001)CrossRefGoogle Scholar
  39. Stein, A.: Advances in microporous and mesoporous solids—highlights of recent progress. Adv. Mater. 15, 763–775 (2003)CrossRefGoogle Scholar
  40. Xia, Y., Rogers, J.A., Paul, K.E., Whitesides, G.M.: Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99, 1823–1848 (1999)CrossRefGoogle Scholar
  41. Xia, Y., Gates, B., Yin, Y., Lu, Y.: Monodispersed colloidal spheres: old materials with new applications. Adv. Mater. 12, 693–713 (2000)CrossRefGoogle Scholar
  42. Ying, J.Y., Mehnert, C.P., Wong, M.S.: Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Ed. 38, 56–77 (1998)CrossRefGoogle Scholar
  43. Zakhidov, A.A., Baughman, R.H., Iqbal, Z., Cui, C., Khayrullin, I., Dantas, S.O., Marti, J., Ralchenko, V.G.: Carbon structures with three-dimensional periodicity at optical wavelengths. Science 282, 897–901 (1998)CrossRefGoogle Scholar
  44. Zhao, D.Y., Feng, J.L., Huo, Q.S., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998a)CrossRefGoogle Scholar
  45. Zhao, D.Y., Huo, Q.S., Feng, J.L., Chmelka, B.F., Stucky, G.D.: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998b)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.CNISM Unità di PadovaPaduaItaly
  2. 2.CNISM and Dipartimento di Fisica e Astronomia G.GalileiUniversità di PadovaPaduaItaly
  3. 3.Korea Research Institute of Standards and Science (KRISS)DaejeonKorea
  4. 4.Korea University of Science and Technology (KUST)DaejeonKorea

Personalised recommendations