Advertisement

Adsorption

, Volume 20, Issue 5–6, pp 713–727 | Cite as

Adsorption of graphene for the removal of inorganic pollutants in water purification: a review

  • Yong Cao
  • Xinbao Li
Article

Abstract

Graphene has aroused widespread attention as a new type of adsorbents due to its outstanding ability for the removal of various pollutants from aqueous solutions. This review summarizes the application of graphene-based nanomaterials as an advanced adsorbent for the removal of inorganic pollutants including anionic and cationic type. The adsorption properties, mechanisms, isotherms, kinetics, thermodynamics and regeneration of adsorbents are all summarized, and the further research trends on graphene-based nanomaterials in the removal of pollutants are also given.

Keywords

Adsorption Graphene Nanomaterials Inorganic pollutants Water purification 

Notes

Acknowledgments

This work is supported by Research Startup Fund of North China university of Water Resources and Electric Power (no. 201011).

References

  1. Abollino, O., Aceto, M., Malandrino, M., Sarzanini, C., Mentasti, E.: Adsorption of heavy metals on Na-montmorillonite effect of pH and organic substances. Water Res. 37, 1619–1627 (2003)Google Scholar
  2. Atia, A.A., Donia, A.M., Abou-El-Enein, S.A., Yousif, A.M.: Studies on uptake behavior of copper(II) and lead(II) by amine chelating resins with different textural properties. Sep. Purif. Technol. 33, 295–301 (2003)Google Scholar
  3. Avouris, P., Dimitrakopoulos, C.: Graphene: synthesis and application. Mater. Today 15, 86–97 (2012)Google Scholar
  4. Babel, S., Kurniawan, T.G.: Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater. 97, 219–243 (2003)Google Scholar
  5. Bai, S., Shen, X.P.: Graphene-inorganic nanocomposites. RSC Adv. 2, 64–98 (2012)Google Scholar
  6. Bi, H.C., Xie, X., Yin, K.B., Zhou, Y.L., Wan, S., He, L.B., Xu, F., Banhart, F., Sun, L.T., Ruoff, R.S.: Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater. 22, 4421–4425 (2012)Google Scholar
  7. Cai, J.H., Jia, C.Q.: Mercury removal from aqueous solution using coke-derived sulfur-impregnated activated carbons. Ind. Eng. Chem. Res. 49, 2716–2721 (2010)Google Scholar
  8. Chandra, C., Kim, K.S.: Highly selective adsorption of Hg2+ by a polypyrrole-reduced graphene oxide composite. Chem. Commun. 47, 3942–3944 (2011)Google Scholar
  9. Chandra, V., Park, J., Chun, Y., Lee, J.W., Hwang, I.C., Kim, K.S.: Water dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4, 3979–3986 (2010)Google Scholar
  10. Chang, Q.G., Lin, W., Ying, W.Z.: Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water. J. Hazard. Mater. 184, 515–522 (2010)Google Scholar
  11. Chen, A.H., Liu, S.C., Chen, C.Y., Chen, C.Y.: Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J. Hazard. Mater. 154, 184–191 (2008)Google Scholar
  12. Cullen, W.R., Reimer, K.J.: Arsenic speciation in the environment. Chem. Rev. 89, 713–764 (1989)Google Scholar
  13. Dabrowski, A., Hubicki, Z., Podkościelny, P., Robens, E.: Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56, 91–106 (2004)Google Scholar
  14. Debabrata, N., Kaushik, G., Ghosh, A.K., Amitabha, D., Sangam, B., Ghosh, U.C.: Manganese-incorporated iron(III) oxide-graphene magnetic nanocomposite: synthesis, characterization, and application for the arsenic(III)-sorption from aqueous solution. J. Nanopart. Res. 14, 1272 (2012)Google Scholar
  15. Deng, X.J., Lu, L.L., Li, H.W., Luo, F.: The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. J. Hazard. Mater. 183, 923–930 (2010)Google Scholar
  16. Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)Google Scholar
  17. Edwards, R.S., Coleman, K.S.: Graphene synthesis: relationship to applications. Nanoscale 5, 38–51 (2013)Google Scholar
  18. Fan, L.L., Luo, C.N., Sun, M., Li, X.J., Qiu, H.M.: Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf. B 103, 523–529 (2013)Google Scholar
  19. Fan, Z.J., Kai, W., Yan, J.Y., Wei, T.W., Zhi, L.J., Feng, J., Ren, Y.M., Song, L.P., Wei, F.: Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 5, 191–198 (2011)Google Scholar
  20. Fu, F.L., Wang, Q.: Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92, 407–418 (2011)Google Scholar
  21. Gao, Y., Li, Y., Zhang, L., Huang, H., Hua, J.J., Shah, S.M., Su, X.G.: Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci. 368, 540–546 (2012)Google Scholar
  22. Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)Google Scholar
  23. Gupta, S.S., Sreeprasad, T.S., Maliyekkal, S.M., Das, S.K., Pradeep, T.: Graphene from sugar and its application in water purification. ACS Appl. Mater. Interfaces 4, 4156–4163 (2012)Google Scholar
  24. Hao, L.Y., Song, H.J., Zhang, L.C., Wan, X.Y., Tang, Y.R., Lv, Y.: SiO2/graphene composite for highly selective adsorption of Pb(II) ion. J. Colloid Interface Sci. 369, 381–387 (2012)Google Scholar
  25. He, Y.Q., Zhang, N.N., Wang, X.D.: Adsorption of graphene oxide/chitosan porous materials for metal ions. Chin. Chem. Lett. 22, 859–862 (2011)Google Scholar
  26. Hu, J., Chen, G.H., Lo, I.M.C.: Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res. 39, 4528–4536 (2005)Google Scholar
  27. Hu, J.S., Zhong, L.S., Song, W.G., Wan, L.J.: Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv. Mater. 20, 2977–2982 (2008)Google Scholar
  28. Huang, Z.H., Zheng, X.Y., Lv, W., Wang, M., Yang, Q.H., Kang, F.Y.: Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27, 7558–7562 (2011)Google Scholar
  29. Imamoglu, M., Tekir, O.: Removal of copper(II) and lead(II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination 228, 108–113 (2008)Google Scholar
  30. Jabeen, H., Chandra, V., Jung, S., Lee, J.W., Kim, K.S., Kim, S.B.: Enhanced Cr(VI) removal using iron nanoparticle decorated graphene. Nanoscale 3, 3583–3585 (2011)Google Scholar
  31. Jolivet, J.P., Chaneac, C., Tronc, E.: Iron Oxide Chemistry. From molecular clusters to extended solid networks. Chem. Commun. 5, 481–483 (2004)Google Scholar
  32. Jonas, B., Felix, H., Carlos-Andres, P., Paolo, S., Marco, C., Mats, P.: Adsorption of aromatic and anti-Aromatic systems on graphene through π-π stacking. J. Phys. Chem. Lett. 1, 3407–3412 (2010)Google Scholar
  33. Karbassi, A.R., Nadjafpour, S.: Flocculation of dissolved Pb, Cu, Zn and Mn during estuarine mixing of river water with the Caspian Sea. Environ. Pollut. 93, 257–260 (1996)Google Scholar
  34. Khan, Z., Kumar, P., Kabir, D.: Kinetics of the reduction of water-soluble colloidal MnO2 by ascorbic acid. J. Colloid Interface Sci. 290, 184–189 (2005)Google Scholar
  35. Kharisov, B.I., Rasika-Dias, H.V., Kharissova, O.V., Jimenez-Perez, V.M., Pe´reza, B.O., Flores, B.M.: Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Adv 2(25), 9325–9358 (2012)Google Scholar
  36. Kuilla, T., Bhadra, S., Yao, D.H., Kim, N.H., Bose, S., Lee, J.H.: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35(11), 1350–1375 (2010)Google Scholar
  37. Kuo, C.Y.: Water purification of removal aqueous copper(II) by as-grown and modified multi-walled carbon nanotubes. Desalination 249(2), 781–785 (2009)Google Scholar
  38. Lee, H., Ihm, J., Cohen, M.L., Louie, S.G.: Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Lett. 10(3), 793–798 (2010)Google Scholar
  39. Lee, Y.C., Yang, J.W.: Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal. J. Ind. Eng. Chem. 18(3), 1178–1185 (2012)Google Scholar
  40. Leenaerts, O., Partoens, B., Peeters, F.M.: Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys. Rev. B 77(12), 125416 (2008)Google Scholar
  41. Lenoble, V., Laclautre, C., Deluchat, V., Serpaud, B., Bollinger, J.C.: Arsenic removal by adsorption on iron(III) phosphate. J. Hazard. Mater. 123(1), 262–268 (2005)Google Scholar
  42. Li, J., Chen, S., Sheng, G., Hu, J., Tan, X., Wang, X.: Effect of surfactants on Pb(II) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes. Chem. Eng. Sci. 166(2), 551–558 (2011a)Google Scholar
  43. Li, N.W., Zheng, M.B., Chang, X.F., Ji, G.B., Lu, H.L., Xue, L.P., Pan, L.J., Cao, J.M.: Preparation ofmagnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties. J. Solid State Chem. 184(4), 953–958 (2011b)Google Scholar
  44. Li, X., Cao, J., Zhang, W.: Stoichiometry of Cr(VI) Immobilization Using Nanoscale Zerovalent Iron (nZVI): a Study with High-Resolution X-Ray Photoelectron Spectroscopy (HR-XPS). Ind. Eng. Chem. Res. 47(7), 2131–2139 (2008)Google Scholar
  45. Li, Y.H., Zhang, P., Du, Q.J., Peng, X.J., Liu, T.H., Wang, Z.H., Xia, Y.Z., Zhang, W., Wang, K.L., Zhu, H.W., Wu, D.H.: Adsorption of fluoride from aqueous solution by graphene. J. Colloid Interface Sci. 363(1), 348–354 (2011c)Google Scholar
  46. Liu, L., Li, C., Bao, C.L., Jia, Q., Xiao, P.F., Liu, X.T., Zhang, Q.P.: Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 93, 350–357 (2012a)Google Scholar
  47. Liu, L., Liu, S.X., Zhang, Q.P., Li, C., Bao, C.L., Liu, X.T., Xiao, P.F.: Adsorption of Au(III), Pd(II), and Pt(IV) from aqueous solution onto graphene oxide. J. Chem. Eng. Data 58(2), 209–216 (2013)Google Scholar
  48. Liu, M.C., Chen, C.L., Hu, J., Wu, X.L., Wang, X.K.: Synthesis of Magnetite/Graphene Oxide Composite and Application for Cobalt(II) Removal. J. Phys. Chem. C 115, 25234–25240 (2011a)Google Scholar
  49. Liu, S.S., Chen, Y.Z., De, Z.L., Hua, G.M., Xu, W., Li, N., Zhang, Y.: Enhanced removal of trace Cr(VI) ions from aqueous solution by titanium oxide–Ag composite adsorbents. J. Hazard. Mater. 190(1), 723–728 (2011b)Google Scholar
  50. Liu, T.H., Li, Y.H., Du, Q.J., Sun, J.K., Jiao, Y.Q., Yang, G.M., Wang, Z.H., Xia, Y.Z., Zhang, W., Wang, K.L., Zhu, H.W., Wu, D.H.: Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf. B 90, 197–203 (2012b)Google Scholar
  51. Lopez-Valdivieso, A., Reyes-Bahena, J.L., Song, S., Herrera-Urbina, R.: Temperature effect on the zeta potential and fluoride adsorption at the α-Al2O3/aqueous solution interface. J. Colloid Interface Sci. 298(1), 1–5 (2006)Google Scholar
  52. Loukidou, M.X., Matis, K.A., Zouboulis, A.I., Liakopoulou-Kyriakidou, M.: Removal of As (V) from wastewaters by chemically modified fungal biomass. Water Res. 37(18), 4544–4552 (2003)Google Scholar
  53. Ma, H.L., Zhang, Y.W., Hu, Q.H., Yan, D., Yu, Z.Z., Zhai, M.L.: Chemical reduction and removal of Cr(VI) from acidic aqueous solution by ethylenediamine-reduced graphene oxide. J. Mater. Chem. 22(13), 5914–5916 (2012)Google Scholar
  54. Madadrang, C.J., Kim, H.Y., Gao, G.H., Wang, N., Zhu, J., Feng, H., Gorring, M., Kasner, M.L., Hou, S.F.: Adsorption behavior of EDTA-Graphene oxide for Pb(II) removal. ACS Appl. Mater. Interfaces 4(3), 1186–1193 (2012)Google Scholar
  55. Makrlik, E., Vanura, P.: Solvent extraction of lead using a nitrobenzene solution of strontium dicarbollylcobaltate in the presence of polyethylene glycol PEG 400. J. Radioanal. Nucl. Chem. 267(1), 233–235 (2005)Google Scholar
  56. Maliyekkal, S.M., Sreeprasad, T.S., Krishnan, D., Kouser, S., Mishra, A.K., Waghmare, U.V., Pradeep, T.: Graphene: a reusable substrate for unprecedented adsorption of pesticides. Small 9(2), 273–283 (2013)Google Scholar
  57. Matlock, M.M., Howerton, B.S., Atwood, D.A.: Chemical precipitation of lead from lead battery recycling plant wastewater. Ind. Eng. Chem. Res. 41(6), 1579–1582 (2002)Google Scholar
  58. Mauter, M., Elimelech, M.: Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 42(16), 5843–5859 (2008)Google Scholar
  59. Mi, X., Huang, G.B., Xie, W.S., Wang, W., Liu, Y., Gao, J.P.: Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon 50(13), 4856–4864 (2012)Google Scholar
  60. Mishra, A.K., Ramaprabhu, M.S.: Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination 282, 39–45 (2011)Google Scholar
  61. Mohan, D., Pittman, C.U.: Arsenic removal from water/wastewater using adsorbents-a critical review. J. Hazard. Mater. 142(1), 1–53 (2007)Google Scholar
  62. Moreno-Castilla, C., Alvarez-Merino, M.A., Pastrana-Martínez, L.M., López-Ramón, M.V.: Adsorption mechanisms of metal cations from water on an oxidized carbon surface. J. Colloid Interface Sci. 345(2), 461–466 (2010)Google Scholar
  63. Ngah, W.S.W., Ghani, S.A., Kamari, A.: Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresour. Technol. 96(4), 443–450 (2005)Google Scholar
  64. Ofomaja, A.E., Naidoo, E.B., Modise, S.J.: Biosorption of copper(II) and lead(II) onto potassium hydroxide treated pine cone powder. J. Environ. Manag. 91(8), 1674–1685 (2010)Google Scholar
  65. Oliveira, L.C.A., Petkowicz, D.I., Smaniotto, A., Pergher, S.B.C.: Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Res. 38(17), 3699–3704 (2004)Google Scholar
  66. Park, S., An, J.H., Jung, I.W., Piner, R.D., An, S.J., Li, X.S., Velamakanni, A., Ruoff, R.S.: Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9(4), 1593–1597 (2009)Google Scholar
  67. Petosa, A.R., Jaisi, D.P., Quevedo, I.R., Elimelech, M., Tufenkji, N.: Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol. 44(17), 6532–6549 (2010)Google Scholar
  68. Pontius, F.W., Brown, K.G., Chen, C.J.: Health implications of arsenic in drinking water. J. Am. Water Works Assoc. 86(9), 52–63 (1994)Google Scholar
  69. Prashant, V.K.: Graphene-Based Nanoarchitectures: anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett. 1(2), 520–527 (2010)Google Scholar
  70. Pyrzynska, K., Bystrzejewski, M.: Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids Surf. A 362(1), 102–109 (2010)Google Scholar
  71. Ramesha, G.K., Vijaya, K.A., Muralidhara, H.B., Sampath, S.: Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J. Colloid Interface Sci. 361(1), 270–277 (2011)Google Scholar
  72. Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., Govindaraj, A.: Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48(42), 7752–7777 (2009a)Google Scholar
  73. Rao, G.P., Lu, C., Su, F.: Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep. Purif. Technol. 58(1), 224–231 (2007)Google Scholar
  74. Rao, M.M., Ramana, D.K., Seshaiah, K., Wang, M.C., Chien, S.W.C.: Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls. J. Hazard. Mater. 166(2), 1006–1013 (2009b)Google Scholar
  75. Ren, X.M., Chen, C.L., Nagatsu, M., Wang, X.K.: Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem. Eng. J. 170(2), 395–410 (2011a)Google Scholar
  76. Ren, Y.M., Yan, N., Wen, Q., Fan, Z.J., Wei, T., Zhang, M.L., Ma, J.: Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from wastewater. Chem. Eng. J. 175, 1–7 (2011b)Google Scholar
  77. Reyes-Bahena, J.L., Robledo-Cabrera, A., Lopez-Valdivieso, A., Herrera-Urbina, R.: Fluoride adsorption onto α-Al2O3 and its effect on the zeta potential at the alumina-aqueous electrolyte interface. Sep. Sci. Technol. 37(8), 1973–1987 (2002)Google Scholar
  78. Rivera-Utrilla, J., Sanchez-Polo, M.: Adsorption of Cr(III) on ozonised activated carbon. Importance of C π-cation interactions. Water Res. 37, 3335–3340 (2003)Google Scholar
  79. Robinson, T., Chandran, B., Nigam, P.: Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Res. 36(11), 2824–2830 (2002)Google Scholar
  80. Rodrigues, L.A., Maschio, L.J., Silva, R.E., Silva, M.L.C.: Adsorption of Cr(VI) from aqueous solution by hydrous zirconium oxide. J. Hazard. Mater. 173(1), 630–636 (2010)Google Scholar
  81. Romero, H.E., Joshi, P., Gupta, A.K., Gutierrez, H.R., Cole, M.W., Tadigadapa, S.A., Eklund, P.C.: Adsorption of ammonia on graphene. Nanotechnology 20(24), 245501 (2009)Google Scholar
  82. Rude, P.D., Aller, R.C.: The influence of Mg2+ on the adsorption of fluoride by hydrous oxides in seawater. Am. J. Sci. 293, 1–24 (1993)Google Scholar
  83. Ruparelia, J.P., Duttagupta, S.P., Chatterjee, A.K., Mukherji, S.: Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232(1), 145–156 (2008)Google Scholar
  84. Sanchez-Polo, M., Rivera-Utrilla, J.: Adsorbent-adsorbate interactions in the adsorption of Cd(II) and Hg(II) on ozonized activated carbons. Environ. Sci. Technol. 36(17), 3850–3854 (2002)Google Scholar
  85. Sheng, G.D., Li, Y.M., Yang, X., Ren, X.M., Yang, S.T., Hu, J., Wang, X.K.: Efficient removal of arsenate by versatile magnetic graphene oxide composites. RSC Adv. 2(32), 12400–12407 (2012)Google Scholar
  86. Shin, S., Jang, J.: Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions. Chem. Commun. 41, 4230–4232 (2007)Google Scholar
  87. Song, H., Zhang, L., He, C., Qu, Y., Tian, Y., Lv, Y.: Graphene sheets decorated with SnO2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors. J. Mater. Chem. 21(16), 5972–5977 (2011)Google Scholar
  88. Soylak, M., Unsal, Y.E., Kizil, N., Aydin, A.: Utilization of membrane filtration for preconcentration and determination of Cu(II) and Pb(II) in food, water and geological samples by atomic absorption spectrometry. Food Chem. Toxicol. 48(2), 517–521 (2010)Google Scholar
  89. Sreeprasad, T.S., Maliyekkal, S.M., Lisha, K.P., Pradeep, T.J.: Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification. J. Hazard. Mater. 186(1), 921–923 (2011)Google Scholar
  90. Stafiej, A., Pyrzynska, K.: Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 58(1), 49–52 (2008)Google Scholar
  91. Tawabini, B., Al-Khaldi, S., Atieh, M., Khaled, M.: Removal of mercury from water by multi-walled carbon nanotubes. Water Sci. Technol. 61, 591–598 (2010)Google Scholar
  92. Wang, J., Deng, B.L., Chen, H., Wang, X.R., Zheng, J.Z.: Removal of aqueous Hg(II) by polyaniline: sorption characteristics and mechanisms. Environ. Sci. Technol. 43(14), 5223–5228 (2009)Google Scholar
  93. Wang, J.L., Shi, Z.X., Fan, J.C., Ge, Y., Yin, J., Hu, G.X.: Self-assembly of graphene into three-dimensional structures promoted by natural phenolilc acids. J. Mater. Chem. 22(42), 22459–22466 (2012)Google Scholar
  94. Wen, T., Wu, X.L., Tan, X.L., Wang, X.K., Xu, A.W.: One-pot synthesis of water-swellable Mg − Al layered double hydroxides and graphene oxide nanocomposites for efficient removal of As (V) from aqueous solutions. ACS Appl. Mater. Interfaces 5(8), 3304–3311 (2013)Google Scholar
  95. Williams, G., Seger, B., Kamat, P.V.: TiO2-Graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7), 1487–1491 (2008)Google Scholar
  96. Wu, Q.H., Zhao, G.Y., Feng, C., Wang, C., Wang, Z.: Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. J. Chromatogr. A 1218(44), 7936–7942 (2011a)Google Scholar
  97. Wu, T., Cai, X., Tan, S.Z., Li, H.Y., Liu, J.S., Yang, W.D.: Adsorption characteristics of acrylonitrile, p-toluenesulfonic acid, 1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions. Chem. Eng. J. 173(1), 144–149 (2011b)Google Scholar
  98. Wu, W.Q., Yang, Y., Zhou, H.H., Ye, T.T., Huang, Z.Y., Liu, R., Kuang, Y.F.: Highly efficient removal of Cu(II) from aqueous solution by using Graphene oxide. Water Air Soil Pollut. 224(1), 1372 (2013a)Google Scholar
  99. Wu, X.L., Wang, L., Chen, C.L., Xu, A.W., Wang, X.K.: Water-dispersible magnetite-graphene-LDH composites for efficient arsenate removal. J. Mater. Chem. 21(43), 17353–17359 (2011c)Google Scholar
  100. Wu, Y., Luo, H.J., Wang, H., Wang, C., Zhang, J., Zhang, Z.L.: Adsorption of hexavalent chromium from aqueous solutions by graphene modified with cetyltrimethylammonium bromide. J. Colloid Interface Sci. 394, 183–191 (2013b)Google Scholar
  101. Xiang, Q.J., Yu, J.G., Jaronie, M.: Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41(2), 782–796 (2012)Google Scholar
  102. Yang, S.T., Chang, Y.L., Wang, H.F., Liu, G.B., Chen, S., Wang, Y.W., Liu, Y.F., Cao, A.: Folding/aggregation of graphene oxide and its application in Cu2+ removal. J. Colloid Interface Sci. 351(1), 122–127 (2010)Google Scholar
  103. Yang, X., Chen, C.L., Li, J.X., Zhao, G.X., Ren, X.M., Wang, X.K.: Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Adv. 2(23), 8821–8826 (2012)Google Scholar
  104. Yao, Y.J., Miao, S.D., Liu, S.Z., Ma, L.P., Sun, H.Q., Wang, S.B.: Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem. Eng. J. 184, 326–332 (2012)Google Scholar
  105. Zhang, G.S., Qu, J.H., Liu, H.J., Liu, R.P., Li, G.T.: Removal mechanism of As(III) by a novel Fe-Mn binary oxide adsorbent: oxidation and sorption. Environ. Sci. Technol. 41(13), 4613–4619 (2007)Google Scholar
  106. Zhang, K., Dwivedi, V., Chi, C.Y., Wu, J.S.: Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. J. Hazard. Mater. 182(1), 162–168 (2010a)Google Scholar
  107. Zhang, N.N., Qiu, H.X., Si, Y.M., Wang, W., Gao, J.P.: Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions. Carbon 49(3), 827–837 (2011)Google Scholar
  108. Zhang, T., Cheng, Z.G., Wang, Y.B., Li, Z.J., Wang, C.X., Li, Y.B., Fang, Y.: Self-assembled 1-Octadecanethiol monolayers on graphene for mercury detection. Nano Lett. 10(11), 4738–4741 (2010b)Google Scholar
  109. Zhang, W.X.: Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res. 5(3–4), 323–332 (2003)Google Scholar
  110. Zhang, X., Cheng, C., Zhao, J., Ma, L., Sun, S.D., Zhao, C.S.: Polyethersulfone enwrapped graphene oxide porous particles for water treatment. Chem. Eng. J. 215–216, 72–81 (2013a)Google Scholar
  111. Zhang, Y.W., Ma, H.L., Peng, J., Zhai, M.L., Yu, Z.Z.: Cr(VI) removal from aqueous solution using chemically reduced and functionalized graphene oxide. J. Mater. Sci. 48(5), 1883–1889 (2013b)Google Scholar
  112. Zhao, G.X., Li, J.X., Wang, X.K.: Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets. Chem. Eng. J. 173(1), 185–190 (2011a)Google Scholar
  113. Zhao, G.X., Jiang, L., He, Y.D., Li, J.X., Dong, H.L., Wang, X.K., Hu, W.P.: Sulfonated graphene for persistent aromatic pollutant management. Adv. Mater. 23(34), 3959–3963 (2011b)Google Scholar
  114. Zhao, G.X., Ren, X.M., Gao, X., Tan, X.L., Li, J.X., Chen, C.L., Huang, Y.Y., Wang, X.K.: Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. 40(41), 10945–10952 (2011c)Google Scholar
  115. Zhao, J.P., Ren, W.C., Cheng, H.M.: Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J. Mater. Chem. 22(38), 20197–20202 (2012)Google Scholar
  116. Zhao, Y.F., He, S., Wei, M., Evans, D.G., Duan, X.: Hierarchical films of layered double hydroxides by using a sol-gel process and their high adaptability in water treatment. Chem. Commun. 46(17), 3031–3033 (2010)Google Scholar
  117. Zhu, H., Jia, Y., Wu, X., Wang, H.: Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J. Hazard. Mater. 172(2), 1591–1596 (2009a)Google Scholar
  118. Zhu, J., Yang, J., Deng, B.: Enhanced mercury ion adsorption by amine-modified activated carbon. J. Hazard. Mater. 166(2), 866–872 (2009b)Google Scholar
  119. Zhu, J.H., Wei, S.Y., Gu, H.B., Rapole, S.B., Wang, Q., Luo, Z.P., Haldolaarachchige, N., Young, D.P., Guo, Z.H.: One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ. Sci. Technol. 46(2), 977–985 (2012)Google Scholar
  120. Zhu, Y.W., Murali, S., Cai, W.W., Li, X.S., Suk, J.W., Potts, J.R., Ruoff, R.S.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Environment and Municipal EngineeringNorth China University of Water Resources and Electric PowerZhengzhouPeople’s Republic of China

Personalised recommendations