, Volume 20, Issue 2–3, pp 233–250 | Cite as

Physical adsorption characterization of nanoporous materials: progress and challenges

  • Matthias ThommesEmail author
  • Katie A. Cychosz


Within the last two decades major progress has been achieved in understanding the adsorption and phase behavior of fluids in ordered nanoporous materials and in the development of advanced approaches based on statistical mechanics such as molecular simulation and density functional theory (DFT) of inhomogeneous fluids. This progress, coupled with the availability of high resolution experimental procedures for the adsorption of various subcritical fluids, has led to advances in the structural characterization by physical adsorption. It was demonstrated that the application of DFT based methods on high resolution experimental adsorption isotherms provides a much more accurate and comprehensive pore size analysis compared to classical, macroscopic methods. This article discusses important aspects of major underlying mechanisms associated with adsorption, pore condensation and hysteresis behavior in nanoporous solids. We discuss selected examples of state-of-the-art pore size characterization and also reflect briefly on the existing challenges in physical adsorption characterization.


Physical adsorption Argon 87 K adsorption Pore condensation Hysteresis DFT pore size distribution Hierarchically structured materials 


  1. Aranovich, G., Donohue, M.: Determining surface areas from linear adsorption isotherms at supercritical conditions. J. Colloid Interface Sci. 194, 392–397 (1997)Google Scholar
  2. Bakaev, V.A.: Rumpled graphite basal plane as a model heterogeneous carbon surface. J. Chem. Phys. 102, 1398–1404 (1995)Google Scholar
  3. Bandosz, T.J., Biggs, M.J., Gubbins, K.E., Hattori, Y., Iiyama, T., Kaneko, K., Pikunic, J., Thomson, K.: Molecular models of porous carbons. Chem. Phys. Carbon 28, 41–228 (2003)Google Scholar
  4. Barton, T.J., Bull, L.M., Klemperer, W.G., Loy, D.A., McEnaney, B., Misono, M., Monson, P.A., Pez, G., Scherer, G.W., Vartuli, J.C., Yaghi, O.M.: Tailored porous materials. Chem. Mater. 11, 2633–2656 (1999)Google Scholar
  5. Bhatia, S.K.: Density functional theory analysis of the influence of pore wall heterogeneity on adsorption in carbons. Langmuir 18, 6845–6856 (2002)Google Scholar
  6. Broekhoff, J.C.P., de Boer, J.H.: Studies on pore systems in catalysts: IX. Calculation of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores A. Fundamental equations. J. Catal. 9, 8–14 (1967a)Google Scholar
  7. Broekhoff, J.C.P., de Boer, J.H.: Studies on pore systems in catalysts: X. Calculations of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores B. Applications. J. Catal. 9, 15–27 (1967b)Google Scholar
  8. Broekhoff, J.C.P., de Boer, J.H.: Studies on pore systems in catalysts: XIII. Pore distributions from the desorption branch of a nitrogen sorption isotherm in the case of cylindrical pores B. Applications. J. Catal. 10, 377–390 (1968a)Google Scholar
  9. Broekhoff, J.C.P., de Boer, J.H.: Studies on pore systems in catalysts: XIV. Calculation of the cumulative distribution functions for slit-shaped pores from the desorption branch of a nitrogen sorption isotherm. J. Catal. 10, 391–400 (1968b)Google Scholar
  10. Cazorla-Amorós, D., Alcañiz-Monge, J., Linares-Solano, A.: Characterization of activated carbon fibers by CO2 adsorption. Langmuir 12, 2820–2824 (1996)Google Scholar
  11. Cheng, L.S., Yang, R.T.: Improved Horvath–Kawazoe equations including spherical pore models for calculating micropore size distribution. Chem. Eng. Sci. 49, 2599–2609 (1994)Google Scholar
  12. Cimino, R., Cychosz, K.A., Thommes, M., Neimark, A.V.: Experimental and theoretical studies of scanning adsorption-desorption isotherms. Colloids Surf. A 437, 76–89 (2013)Google Scholar
  13. Coasne, B., Galarneau, A., Pellenq, R.J., Di Renzo, F.: Adsorption, intrusion and freezing in porous silica: the view from the nanoscale. Chem. Soc. Rev. 42, 4141–4171 (2013)Google Scholar
  14. Cole, M.W., Saam, W.F.: Excitation spectrum and thermodynamic properties of liquid films in cylindrical pores. Phys. Rev. Lett. 32, 985–988 (1974)Google Scholar
  15. Cychosz, K.A., Guo, X., Fan, W., Cimino, R., Gor, G.Y., Tsapatsis, M., Neimark, A.V., Thommes, M.: Characterization of the pore structure of three-dimensionally ordered mesoporous carbons using high resolution gas sorption. Langmuir 28, 12647–12654 (2012)Google Scholar
  16. DeBoer, J.H.: Structure and properties of porous materials. In: Everett, D.H., Stone, F.S. (eds.) Colston papers. Butterworths, London (1958)Google Scholar
  17. Do, D.D., Do, H.D.: Modeling of adsorption on nongraphitized carbon surface: GCMC simulation studies and comparison with experimental data. J. Phys. Chem. B 110, 17531–17538 (2006)Google Scholar
  18. Dubinin, M.M., Radushkevitch, L.V.: Dokl. Akak. Nauk. SSSR 55, 331 (1947)Google Scholar
  19. Dubinin, M.M., Timofeev, D.P.: Zh. Fiz. Khim. 22, 133 (1948)Google Scholar
  20. Everett, D.H.: Adsorption hysteresis. In: Flood, E.A. (ed.) The Solid–Gas Interface, pp. 1055–1113. Decker, New York (1967)Google Scholar
  21. Everett, D.H., Powl, J.C.: Adsorption in slit-like and cylindrical micropores in the Henry’s law region. A model for the microporosity of carbons. J. Chem. Soc., Faraday Trans. 1(72), 619–636 (1976)Google Scholar
  22. Ferey, G.: Hybrid porous solids. Stud. Surf. Sci. Catal. 168, 327 (2007)Google Scholar
  23. Findenegg, G.H., Gross, S., Michalski, T.: Pore condensation in controlled-pore glass. An experimental test of the Saam–Cole theory. Stud. Surf. Sci. Catal. 87, 71–80 (1994)Google Scholar
  24. Findenegg, G.H., Jähnert, S., Müter, D., Prass, J., Paris, O.: Fluid adsorption in ordered mesoporous solids determined by in situ small angle X-ray scattering. Phys. Chem. Chem. Phys. 12, 7211–7220 (2010)Google Scholar
  25. Furmaniak, S., Terzyk, A.P., Gauden, P.A., Harris, P.J.F., Kowalczyk, P.: The influence of carbon surface oxygen groups on Dubinin–Astakhov equation parameters calculated from CO2 adsorption isotherm. J. Phys. 22, 085003 (2010)Google Scholar
  26. García-Martínez, J., Cazorla-Amorós, D., Linares-Solano, A.: Further evidence of the usefulness of CO2 adsorption to characterize microporous solids. Stud. Surf. Sci. Catal. 128, 485–494 (2000)Google Scholar
  27. Garrido, J., Linares-Solano, A., Martín-Martínez, J.M., Molina-Sabio, M., Rodríguez-Reinoso, F., Torregrosa, R.: Use of N2 vs. CO2 in the characterization of activated carbons. Langmuir 3, 76–81 (1987)Google Scholar
  28. Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M.: Phase separation in confined systems. Rep. Prog. Phys. 62, 1573–1659 (1999)Google Scholar
  29. Gor, G.Y., Thommes, M., Cychosz, K.A., Neimark, A.V.: Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon 50, 1583–1590 (2012)Google Scholar
  30. Gor, G.Y., Neimark, A.V.: Adsorption-induced deformation of mesoporous solids: macroscopic approach and density functional theory. Langmuir 27, 6926–6931 (2011)Google Scholar
  31. Gor, G.Y., Paris, O., Prass, J., Russo, P.A., Carott Ribeiro, M.L., Neimark, A.V.: Adsorption of n-pentane on mesoporous silica and adsorbent deformation. Langmuir 29, 8601–8608 (2013)Google Scholar
  32. Gregg, S.J., Sing, K.S.W.: Adsorption. Surface Area and Porosity. Academic Press, London (1982)Google Scholar
  33. Grosman, A., Ortega, C.: Capillary condensation in porous materials. Hysteresis and interaction without pore blocking/percolation process. Langmuir 24, 3977–3986 (2008)Google Scholar
  34. Gubbins, K.E.: Theory and simulation of adsorption in micropores. In: Fraissard, J., Conner, C.W. (eds.) Physical Adsorption: Experiment, Theory and Applications, pp. 65–103. Kluwer Academic Publishers, The Netherlands (1997)Google Scholar
  35. Hartmann, M., Jung, D.: Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends. J. Mater. Chem. 20, 844–857 (2010)Google Scholar
  36. Hirscher, M., Panella, B., Schmitz, B.: Metal–organic frameworks for hydrogen storage. Microporous Mesoporous Mater. 129, 335–339 (2010)Google Scholar
  37. Horvath, G., Kawazoe, K.: Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Japan 16, 470–475 (1983)Google Scholar
  38. Horikawa, T., Sekida, T., Hayashi, J., Katoh, M., Do, D.D.: A new adsorption–desorption model for water adsorption in porous carbons. Carbon 49, 416–424 (2011)Google Scholar
  39. Hoffmann, F., Cornelius, M., Morell, M., Fröba, M.: Periodic mesoporous organosilicas: past, presence and future. J. Nanosci. Nanotechn. 6, 265–288 (2006)Google Scholar
  40. Hung, F.R., Bhattacharya, S., Coasne, B., Thommes, M., Gubbins, K.E.: Argon and krypton adsorption on templated mesoporous silicas: molecular simulation and experiment. Adsorption 13, 425–437 (2007)Google Scholar
  41. Inayat, A., Knoke, I., Spieker, E., Schwieger, W.: Assemblies of mesoporous FAU-type zeolite nanosheets. Agew. Chem. Int. Ed. 51, 1965–1992 (2012)Google Scholar
  42. Jagiello, J., Thommes, M.: Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon 42, 1227–1232 (2004)Google Scholar
  43. Jagiello, J., Olivier, J.P.: A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. J. Phys. Chem. C 113, 19382–19385 (2009)Google Scholar
  44. Jagiello, J., Olivier, J.P.: 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55, 70–80 (2013)Google Scholar
  45. Jähnert, S., Müter, D., Prass, J., Zickler, G.A., Paris, O., Findenegg, G.H.: Pore structure and fluid sorption in ordered mesoporous silica. I. Experimental study by in situ small-angle X-ray scattering. J. Phys. Chem. C 113, 15201–15210 (2009)Google Scholar
  46. Jaroniec, M., Solovyov, L.A.: Improvement of the Kruk–Jaroniec–Sayari method for pore size analysis of ordered silica with cylindrical mesopores. Langmuir 22, 6757–6760 (2006)Google Scholar
  47. Kaneko, K., Roh, T., Fujimori, T.: Collective interactions of molecules with an interfacial solid. Chem. Lett. 41, 466–475 (2012)Google Scholar
  48. Kaneko, K., Hanzawa, Y., Iiyama, T., Kanda, T., Suzuki, T.: Cluster-mediated water adsorption on carbon nanopores. Adsorption 5, 7–13 (1999)Google Scholar
  49. Kim, T.W., Ryoo, R., Kruk, M., Gierszal, K.P., Jaroniec, M., Kamiya, S., Terasaki, O.: Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time. J. Phys. Chem. B 108, 11480–11489 (2004)Google Scholar
  50. Kleitz, F.: Ordered mesoporous materials. In: Ertl, G., Koezinger, H., Schueth, F., Weitkamp, J. (eds.) Handbook of Heterogenous Catalysis, pp. 178–219. Wiley, Weinheim (2008)Google Scholar
  51. Kleitz, F., Bérubé, F., Guillet-Nicolas, R., Yang, C.-M., Thommes, M.: Probing adsorption, pore condensation, and hysteresis behavior of pure fluids in three-dimensional cubic mesoporous KIT-6 silica. J. Phys. Chem. C 114, 9344–9355 (2010)Google Scholar
  52. Kleitz, F., Choi, S.H., Ryoo, R.: Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 17, 2136–2137 (2003)Google Scholar
  53. Krause, K.M., Thommes, M., Brett, M.J.: Pore analysis of obliquely deposited nanostructures by krypton gas adsorption at 87 K. Microporous Mesoporous Mater. 143, 166–173 (2011)Google Scholar
  54. Kresge, C.T., Roth, W.J.: The discovery of mesoporous molecular sieves from the twenty year perspective. Chem. Soc. Rev. 42, 3663–3670 (2013)Google Scholar
  55. Kruk, M., Celer, E.B., Matos, J.R., Pikus, S., Jaroniec, M.: Synthesis of FDU-1 silica with narrow pore size distribution and tailorable pore entrance size in the presence of sodium chloride. J. Phys. Chem. B 109, 3838–3843 (2005)Google Scholar
  56. Kruk, M., Jaroniec, M., Sayari, A.: Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13, 6267–6273 (1997)Google Scholar
  57. Landers, J., Gor, G.Y., Neimark, A.V.: Density functional theory methods for characterization of porous materials. Colloids Surf. A 437, 3–32 (2013)Google Scholar
  58. Lässig, D., Lincke, J., Moellmer, J., Reichenbach, C., Moeller, A., Gläser, R., Kalies, G., Cychosz, K.A., Thommes, M., Staudt, R., Krautscheid, H.: A microporous copper metal-organic framework with high H2 and CO2 adsorption capacity at ambient pressure. Angew. Chem. Int. Ed. 50, 10344–10348 (2011)Google Scholar
  59. Lastoskie, C., Gubbins, K.E., Quirke, N.: Pore size distribution analysis of microporous carbons: a density functional theory approach. J. Phys. Chem. 97, 4786–4796 (1993)Google Scholar
  60. Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999)Google Scholar
  61. Li, K., Valla, J., Garcia-Martinez, J.: Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking. ChemCatChem (2013). doi: 10.1002/cctc.201300345 Google Scholar
  62. Libby, B., Monson, P.A.: Adsorption/desorption hysteresis in inkbottle pores: a density functional theory and Monte Carlo simulation study. Langmuir 20, 4289–4294 (2004)Google Scholar
  63. Liu, J.-C., Monson, P.A.: Does water condense in carbon pores? Langmuir 21, 10219–10225 (2005)Google Scholar
  64. Liu, H., Seaton, N.A.: Determination of the connectivity of porous solids from nitrogen sorption measurements—III. Solids containing large mesopores. Chem. Eng. Sci. 49, 1869–1878 (1994)Google Scholar
  65. Liu, H., Zhang, L., Seaton, N.A.: Sorption hysteresis as a probe of pore structure. Langmuir 9, 2576–2582 (1993)Google Scholar
  66. Lowell, S., Shields, J., Thomas, M.A., Thommes, M.: Characterization of Porous Solids and Powders: Surface Area. Pore Size and Density. Springer, Amsterdam (2004)Google Scholar
  67. Lodewyckx, P., Vansant, E.F.: Water isotherms of activated carbons with small amounts of surface oxygen. Carbon 37, 1647–1649 (1999)Google Scholar
  68. Lodewyckx, P., Raymundo-Pinera, E., Vaclavikova, M., Berezovska, I., Thommes, M., Beguin, F., Dobos, G.: Suggested improvements in the parameters used for describing the low relative pressure region of the water vapour isotherms of activated carbons. Carbon 60, 556–558 (2013)Google Scholar
  69. Lucena, S.M.P., Paiva, C.A.S., Silvino, P.F.G., Azevedo, D.C.S., Cavalcante, C.L.: The effect of heterogeneity in the randomly etched graphite model for carbon pore size characterization. Carbon 48, 2554–2565 (2010)Google Scholar
  70. Mascotto, S., Wallacher, D., Brandt, A., Hauss, T., Thommes, M., Zickler, G.A., Funari, S., Timmann, A., Smarsly, B.: Analysis of microporosity in ordered mesoporous hierarchically structured silica by combining physisorption with in situ small-angle scattering (SAXS and SANS). Langmuir 25, 12670–12681 (2009)Google Scholar
  71. Mason, G.: The effect of pore space connectivity on the hysteresis of capillary condensation in adsorption–desorption isotherms. J. Colloids Interface Sci. 88, 36–46 (1982)Google Scholar
  72. Mintova, S., Cejka, J.: Micro/mesoporous composites. Stud. Surf. Sci. Catal. 168, 301–326 (2007)Google Scholar
  73. Moellmer, J., Celer, E.B., Luebke, R., Cairns, A.J., Staudt, R., Eddaoudi, M., Thommes, M.: Insights on adsorption characterization of metal-organic frameworks: a benchmark study on the novel soc-MOF. Microporous Mesoporous Mater. 129, 345–353 (2010)Google Scholar
  74. Möller, K., Bein, T.: Pore within pores—how to craft ordered hierarchical zeolites. Science 333, 297–298 (2011)Google Scholar
  75. Monson, P.A.: Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory. Microporous Mesoporous Mater. 160, 47–66 (2012)Google Scholar
  76. Monson, P.A.: Contact angles, pore condensation and hysteresis: insights from a simple molecular model. Langmuir 24, 12295–12302 (2008)Google Scholar
  77. Naumov, S., Khokhlov, A., Valiullin, R., Karger, J., Monson, P.A.: Understanding capillary condensation and hysteresis in porous silicon: network effects within independent pores. Phys. Rev. E 78, 060601 (2008)Google Scholar
  78. Morishige, K., Tateishi, M., Hirose, F.: Change in desorption mechanism from pore blocking to cavitation with temperature for nitrogen in ordered silica with cagelike pores. Langmuir 22, 9220–9224 (2006)Google Scholar
  79. Myasaka, K., Hano, H., Kubota, Y., Lin, Y., Ryoo, R., Takata, M., Kitagawa, S., Neimark, A.V., Terasaki, O.: A stand-alone mesoporous crystal structure model from in situ X-ray diffraction: nitrogen adsorption on 3D cagelike mesoporous silica SBA-16. Chem. Eur. J. 18, 10300 (2012)Google Scholar
  80. Na, K., Jo, C., Kim, J., Cho, K., Jung, J., Seo, Y., Messinger, R.J., Chmelka, B.F., Ryoo, R.: Directing zeolite structures into hierarchically nanoporous architectures. Science 333, 328–332 (2011)Google Scholar
  81. Neimark, A.V.: The method of indeterminate Lagrange multipliers in nonlocal density functional theory. Langmuir 11, 4183–4184 (1995)Google Scholar
  82. Neimark, A.V.: Percolation theory of capillary hysteresis phenomena and its application for characterization of porous solids. Stud. Surf. Sci. Catal. 62, 67–74 (1991)Google Scholar
  83. Neimark, A.V., Ravikovitch, P.I.: Capillary condensation in MMS and pore structure characterization. Micropor. Mesopor. Mat. 44, 697–707 (2001)Google Scholar
  84. Neimark, A.V., Ravikovitch, P.I., Vishnyakov, A.: Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores. J. Phys. 15, 347–365 (2003)Google Scholar
  85. Neimark, A.V., Lin, Y., Ravikovitch, P.I., Thommes, M.: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47, 1617–1628 (2009)Google Scholar
  86. Neimark, A.V., Sing, K.S.W., Thommes, M.: Surface area and porosity. In: Ertl, G., Koezinger, H., Schueth, F., Weitkamp, J. (eds.) Handbook of Heterogeneous Catalysis, pp. 721–737. Wiley, New York (2008)Google Scholar
  87. Neimark, A.V., Coudert, F.X., Boutin, A., Fuchs, A.H.: Stress-based model for the breathing of metal–organic framework. Phys. Chem. Lett. 1, 445–449 (2010)Google Scholar
  88. Nguyen, T.X., Cohaut, N., Bae, J.-S., Bhatia, S.K.: New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation. Langmuir 24, 7912–7922 (2008)Google Scholar
  89. Nguyen, P.T.M., Fan, C., Do, D.D., Nicholson, D.: On the cavitation-like pore blocking in ink-bottle pore: evolution of hysteresis loop with neck size. J. Phys. Chem. C 117, 5475–5484 (2013a)Google Scholar
  90. Nguyen, P.T., Do, D.D., Nicholson, D.: Simulation study of hysteresis of argon adsorption in a conical pore and a constricted cylindrical pore. J. Colloid Interface Sci. 396, 242–250 (2013b)Google Scholar
  91. Ohba, T., Kanoh, H., Kaneko, K.: Cluster-growth-induced water adsorption in hydrophobic carbon nanopores. J. Phys. Chem. B 108, 14964–14969 (2004)Google Scholar
  92. Olivier, J.P.: Improving the models used for calculating the size distribution of micropore volume of activated carbons from adsorption data. Carbon 36, 1469–1472 (1998)Google Scholar
  93. Olivier, J.P., Conklin, W.B., Szombathely, M.V.: Determination of pore size distribution from density functional theory: a comparison of nitrogen and argon results. Stud. Surf. Sci. Catal. 87, 81–89 (1994)Google Scholar
  94. Parlar, M., Yortsos, Y.C.: Percolation theory of vapor adsorption–desorption processes in porous materials. J. Colloid Interface Sci. 124, 162–176 (1988)Google Scholar
  95. Pauporté, T., Rathousky, J.: Electrodeposited mesoporous ZnO thin films as efficient photocatalysts for the degradation of dye pollutants. J. Phys. Chem. C 111, 7639–7644 (2007)Google Scholar
  96. Pérez-Ramírez, J., Mitchell, S., Verboekend, D., Milina, M., Michels, N.-L., Krumeich, F., Marti, N., Erdmann, M.: Expanding the horizons of hierarchical zeolites: beyond laboratory curiosity towards industrial revolution. ChemCatChem 3, 1731–1734 (2011)Google Scholar
  97. Rasmussen, C.J., Vishnyakov, A., Thommes, M., Smarsly, B.M., Kleitz, F., Neimark, A.V.: Cavitation in metastable liquid nitrogen confined to nanoscale pores. Langmuir 26, 10147–10157 (2010)Google Scholar
  98. Ravikovitch, P.I., Neimark, A.V.: Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures. Langmuir 18, 1550–1560 (2002a)Google Scholar
  99. Ravikovitch, P.I., Neimark, A.V.: Experimental confirmation of different mechanisms of evaporation from ink-bottle type pores: equilibrium, pore blocking, and cavitation. Langmuir 18, 9830–9837 (2002b)Google Scholar
  100. Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16, 2311–2320 (2000)Google Scholar
  101. Reichenauer, G., Scherer, G.W.: Nitrogen adsorption in compliant materials. J. Non-Cryst. Solids 277, 162–172 (2000)Google Scholar
  102. Reichenauer, G.: Micropore adsorption dynamics in synthetic hard carbons. Adsorption 11, 467–471 (2005)Google Scholar
  103. Rios, R.V.R.A., Silvestre-Albero, J., Sepúlveda-Escribano, A., Molina-Sabio, M., Rodríguez-Reinoso, F.: Kinetic restrictions in the characterization of narrow microporosity in carbon materials. J. Phys. Chem. C 111, 3803–3805 (2007)Google Scholar
  104. Rojas, F., Kornhauser, I., Felipe, C., Esparza, J.M., Cordero, S., Domínguez, A., Riccardo, J.L.: Capillary condensation in heterogeneous mesoporous networks consisting of variable connectivity and pore-size correlation. Phys. Chem. Chem. Phys. 4, 2346–2355 (2002)Google Scholar
  105. Roth, W.J., Vartuli, J.C.: Synthesis of mesoporous molecular sieves. Stud. Surf. Sci. Catal. 157, 91–110 (2005)Google Scholar
  106. Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., Unger, K.K.: Recommendations for the characterization of porous solids. Pure Appl. Chem. 66, 1739–1748 (1994)Google Scholar
  107. Rouquerol, J., Baron, G., Denoyel, R., Giesche, H., Groen, J., Klobes, P., Levitz, P., Neimark, A.V., Rigby, S., Skudas, R., Sing, K., Thommes, M., Unger, K.: Liquid intrusion and alternative methods for the characterization of macroporous materials. Pure Appl. Chem. 84, 107–136 (2012)Google Scholar
  108. Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewellyn, P., Maurin, G.: Adsorption by Powders and Porous Solids. Academic Press, London (2013)Google Scholar
  109. Rouquerol, J., Llewellyn, P., Rouquerol, F.: Is the BET equation applicable to micropore adsorbents? Stud. Surf. Sci. Catal. 160, 49–56 (2007)Google Scholar
  110. Saito, A., Foley, H.C.: Curvature and parametric sensitivity in models for adsorption in micropores. AIChE J. 37, 429–436 (1991)Google Scholar
  111. Sarkisov, L., Monson, P.A.: Modeling of adsorption and desorption in pores of simple geometry using molecular dynamics. Langmuir 17, 7600–7604 (2001)Google Scholar
  112. Sel, O., Brandt, A., Wallacher, D., Thommes, M., Smarsly, B.: Pore hierarchy in mesoporous silicas evidenced by in situ SANS during nitrogen physisorption. Langmuir 23, 4724–4727 (2007)Google Scholar
  113. Seaton, N.A., Walton, J.P.R.B., Quirke, N.: A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon 27, 853–861 (1989)Google Scholar
  114. Serrano, D.P., Aguado, J., Morales, G., Rodríguez, J.M., Peral, A., Thommes, M., Epping, J.D., Chmelka, B.F.: Molecular and meso- and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chem. Mater. 21, 641–654 (2009)Google Scholar
  115. Shpeizer, B.G., Bakhmutov, V.I., Clearfield, A.: Supermicroporous alumina–silica zinc oxides. Microporous Mesoporous Mater. 90, 81–86 (2006)Google Scholar
  116. Shpeizer, B.G., Bakhmoutov, V.I., Zhang, P., Prosvirin, A.V., Dunbar, K.R., Thommes, M., Clearfield, A.: Transition metal–alumina/silica supermicroporous composites with tunable porosity. Colloids Surfaces A 357, 105–115 (2010)Google Scholar
  117. Shen, J., Monson, P.A.: A molecular model of adsorption in a dilute semiflexible porous network. Mol. Phys. 100, 2031–2039 (2002)Google Scholar
  118. Silvestre-Albero, J., Silvestre-Albero, A., Rodríguez-Reinoso, F., Thommes, M.: Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4 K), carbon dioxide (273 K) and argon (87.3 K) adsorption in combination with immersion calorimetry. Carbon 50, 3128–3133 (2012)Google Scholar
  119. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)Google Scholar
  120. Soares Maia, D.A., de Oliveira, J.C.A., Toso, J.P., Sapag, K., López, R.H., Azevedo, D.C.S., Cavalcante, C.L., Zgrablich, G.: Characterization of the PSD of activated carbons from peach stones for separation of combustion gas mixtures. Adsorption 17, 853–861 (2011)Google Scholar
  121. Tanaka, H., Hiratsuka, T., Nishiyama, N., Mori, K., Miyahara, M.T.: Capillary condensation in mesoporous silica with surface roughness. Adsorption 19, 631–641 (2013)Google Scholar
  122. Stoeckli, F., Lavanchy, A.: The adsorption of water by active carbons, in relation to their chemical and structural properties. Carbon 38, 475–477 (2000)Google Scholar
  123. Tarazona, P.: Free-energy density functional for hard spheres. Phys. Rev. A 31, 2672–2679 (1985)Google Scholar
  124. Tarazona, P., Evans, R.: A simple density functional theory for inhomogeneous liquids. Mol. Phys. 52, 847–857 (1984)Google Scholar
  125. Thommes, M.: Physical adsorption characterization of nanoporous materials. Chem. Ing. Tech. 82, 1059–1073 (2010)Google Scholar
  126. Thommes, M., Findenegg, G.H.: Pore condensation and critical-point shift of a fluid in controlled-pore glass. Langmuir 10, 4270–4277 (1994)Google Scholar
  127. Thommes, M.: Physical adsorption characterization of ordered and amorphous mesoporous materials. In: Lu, G.Q., Zhao, X.S. (eds.) Nanoporous Materials Science and Engineering, pp. 317–364. World Scientific, London (2004)Google Scholar
  128. Thommes, M.: Textural characterization of zeolites and ordered mesoporous materials by physical adsorption. Stud. Surf. Sci. Catal. 168, 495–523 (2007)Google Scholar
  129. Thommes, M., Cychosz, K.A., Neimark, A.V.: Advanced physical adsorption characterization of nanoporous carbons. In: Tascon, J.M.D. (ed.) Novel Carbon Adsorbents, pp. 107–145. Elsevier, Oxford (2012a)Google Scholar
  130. Thommes, M., Mitchell, S., Pérez-Ramírez, J.: Surface and pore structure assessment of hierarchical MFI zeolites by advanced water and argon sorption studies. J. Phys. Chem. C 116, 18816–18823 (2012b)Google Scholar
  131. Thommes, M., Nishyama, N., Tanaka, S.: Aspects of a novel method for the pore size analysis of thin silica films based on krypton adsorption at liquid argon temperature (87.3 K). Stud. Surf. Sci. Catal. 165, 551–554 (2007)Google Scholar
  132. Thommes, M., Smarsly, B., Groenewolt, M., Ravikovitch, P.I., Neimark, A.V.: Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir 22, 756–764 (2006)Google Scholar
  133. Thommes, M., Morlay, C., Ahmad, R., Joly, J.P.: Assessing surface chemistry and pore structure of active carbons by a combination of physisorption (H2O, Ar, N2, CO2). XPS and TPD-MS. Adsorption 17, 653–661 (2011)Google Scholar
  134. Thommes, M., Morell, J., Cychosz, K.A., Fröba, M.: Combining nitrogen, argon, and water adsorption for advanced characterization of ordered mesoporous carbons (CMKs) and periodic mesoporous organosilicas (PMOs). Langmuir (2013). doi: 10.1021/la402832b Google Scholar
  135. Thommes, M., Köhn, R., Fröba, M.: Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled pore glass at temperatures above and below the bulk triple point. Appl. Surf. Sci. 196, 239–249 (2002)Google Scholar
  136. Thomson, K.T., Gubbins, K.E.: Modeling structural morphology of microporous carbons by reverse Monte Carlo. Langmuir 16, 5761–5773 (2000)Google Scholar
  137. Turner, A.R., Quirke, N.A.: Grand canonical Monte Carlo study of adsorption on graphitic surfaces with defects. Carbon 36, 1439–1446 (1998)Google Scholar
  138. Valiullin, R., Naumov, S., Galvosas, P., Karger, J., Woo, H.J., Porcheron, F., Monson, P.A.: Exploration of molecular dynamics during transient sorption of fluids in mesoporous materials. Nature 443, 965–968 (2006)Google Scholar
  139. Valiullin, R., Kaerger, J.: The impact of mesopores on mass transfer in nanoporous materials: evidence of diffusion measurement by NMR. Chem. Ing. Tech. 83, 166 (2011)Google Scholar
  140. Van Bemmelen, J.M.: Die absorption das wasser in den kolloiden, besonders in dem gel der kieselsäure. Z. Anorg. Allg. Chem. 13, 233–356 (1897)Google Scholar
  141. Vishnyakov, A., Neimark, A.V.: Monte Carlo simulation test of pore blocking effects. Langmuir 19, 3240–3247 (2003)Google Scholar
  142. Vishnyakov, A., Ravikovitch, P.I., Neimark, A.V.: Molecular level models for CO2 sorption in nanopores. Langmuir 15, 8736–8742 (1999)Google Scholar
  143. Wall, G.C., Brown, R.J.C.: The determination of pore-size distributions from sorption isotherms and mercury penetration in interconnected pores: the application of percolation theory. J. Colloid Interface Sci. 82, 141–149 (1981)Google Scholar
  144. Woo, H.-J., Sarkisov, L., Monson, P.A.: Mean-field theory of fluid adsorption in a porous glass. Langmuir 17, 7472–7475 (2001)Google Scholar
  145. Zhang, X., Liu, D., Xu, D., Asahina, S., Cychosz, K.A., Agrawal, K.V., AlWahedi, Y., Bhan, A., AlHashimi, S., Terasaki, O., Thommes, M., Tsapatsis, M.: Synthesis of self-pillared nanosheets by repetitive branching. Science 336, 1684–1687 (2012)Google Scholar
  146. Zhao, D., Wang, Y.: The synthesis of mesoporous molecular sieves. Stud. Surf. Sci. Catal. 168, 241–300 (2007)Google Scholar
  147. Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., Ruoff, R.S.: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Quantachrome InstrumentsBoynton BeachUSA

Personalised recommendations