Advertisement

Adsorption

, Volume 19, Issue 6, pp 1263–1272 | Cite as

Adsorbent screening for biobutanol separation by adsorption: kinetics, isotherms and competitive effect of other compounds

  • N. Abdehagh
  • F. H. Tezel
  • J. ThibaultEmail author
Article

Abstract

Butanol, considered as one of the best renewable alternatives for gasoline, has attracted significant attention in recent years. However, biobutanol production via fermentation is plagued by the low final product concentration due to product inhibition. It is possible to enhance productivity by selectively removing biobutanol from the fermentation broth. Adsorption is one of the most promising and energy-efficient techniques for butanol separation and recovery. In the present study, different adsorbents were tested by performing kinetic and equilibrium experiments to find the best adsorbent for butanol separation. Activated carbon (AC) F-400 showed the fastest adsorption rate and the highest adsorption capacity amongst ACs and zeolites tested. AC F-400 also showed the highest affinity toward butanol and to a lesser extent for butyric acid whereas its adsorption capacity for the other main components present in acetone–butanol–ethanol fermentation broths was very low. In addition, the butanol adsorption capacity was not affected by the presence of ethanol, glucose and xylose while the presence of acetone led to a slight decrease in adsorption capacity at low butanol concentrations. On the other hand, the presence of acids (acetic acid and butyric acid) showed a significant effect on the butanol adsorption capacity over a wide range of butanol concentration and this effect was more pronounced for butyric acid.

Keywords

Butanol adsorption Adsorbent screening Activated carbon Zeolites Kinetic and equilibrium experiments 

List of symbols

a

Equation constant (Eq. 2)

b

Langmuir constant, L/g

C

Butanol concentration at time t, g/L

C0

Initial butanol concentration, g/L

Ce

Equilibrium butanol concentration in solution, g/L

k

Pseudo-second order Lagergren’s rate constant, g/g min

Mads

The amount of adsorbent used, g

n

Freundlich constant, (dimensionless)

q

Butanol adsorption capacity at time t, g/g

qe

Butanol adsorption capacity at equilibrium state, g/g

qs

Maximum butanol adsorption capacity, g/g

t

Time, min

Abbreviations

ABE

Acetone–butanol–ethanol

AC

Activated carbon

NHOC

Net heat of combustion

MWCNT

Multi-walled carbon nano tube

Notes

Acknowledgments

The authors would like to thank University of Ottawa and Natural Sciences and Engineering Research Council of Canada (NSERC0 for their financial contributions for this study.

References

  1. Antoni, D., Zverlov, V.V., Schwarz, W.H.: Biofuels from microbes (mini review). Appl. Microbiol. Biotechnol. 77, 23–35 (2007)CrossRefGoogle Scholar
  2. Dellomonaco, C., Fava, F., Gonzalez, R.: The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb. Cell Fact. 9, 3 (2010)CrossRefGoogle Scholar
  3. Dürre, P.: Biobutanol: An attractive biofuel. Biotechnol. J. 2, 1525–1534 (2007)CrossRefGoogle Scholar
  4. El-Zanati, E., Abdel-Hakim, E., El-Ardi, O., Fahmy, M.: Modeling and simulation of butanol separation from aqueous solutions using pervaporation. J. Membr. Sci. 280, 278–283 (2006)CrossRefGoogle Scholar
  5. Ezeji, T.C., Qureshi, N., Blaschek, H.P.: Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J. Microbiol. Biotechnol. 19, 595–603 (2003)CrossRefGoogle Scholar
  6. Ezeji, T.C., Qureshi, N., Blaschek, H.P.: Butanol fermentation research: Upstream and downstream manipulations. Chem. Rec. 4, 305–314 (2004)CrossRefGoogle Scholar
  7. Ezeji, T.C., Qureshi, N., Blaschek, H.P.: Bioproduction of butanol from biomass: from genes to Bioreactors. Curr. Opin. Biotechnol. 18, 220–227 (2007)CrossRefGoogle Scholar
  8. Feirey, J.L., Speitel, G.E. Jr, katz, L.E.: Impact of natural organic matter on reduction by granular activated carbon: The role of porosity and electrostatic surface properties. Environ. Sci. Technol. 40, 4268–4273 (2006)CrossRefGoogle Scholar
  9. Fouad, E.A., Feng, X.: Use of pervaporation to separate butanol from dilutes aqueous solutions: Effects of operating conditions and concentration polarization. J. Membr. Sci. 323, 428–435 (2008)CrossRefGoogle Scholar
  10. García, V., Pongracz, E., Muurinen, E., Keiski, R.L.: Recovery of n-butanol from salt containing solutions by pervaporation. Desalination 241, 201–211 (2009)CrossRefGoogle Scholar
  11. Groot, W.J., Luyben, K.Ch.A.M.: In situ product recovery by adsorption in the butanol/isopropanol batch fermentation. Appl. Microbiol. Biotechnol. 25, 29–31 (1986)CrossRefGoogle Scholar
  12. Groot, W.J., Van der Lans, R.G.J.M., Luyben, K.Ch.A.M.: Technologies for butanol recovery integrated with fermentations. Process Biochem. 27, 61–75 (1992)CrossRefGoogle Scholar
  13. Harlick, P.J.E., Tezel, F.H.: An experimental adsorbent screening study for CO2 removal from N2. Microporous Mesoporous Mater. 76, 71–79 (2004)CrossRefGoogle Scholar
  14. Harvey, B.G., Meylemans, H.A.: The role of butanol in the development of sustainable fuel technologies. J. Chem. Technol. Biotechnol. 86, 2–9 (2011)CrossRefGoogle Scholar
  15. Holtzapple, M.T., Brown, R.F.: Conceptual design for a process to recover volatile solutes from aqueous solutions using silicalite. Sep. Technol. 4, 213–229 (1995)CrossRefGoogle Scholar
  16. Li S., Srivastava, R., Parnas, R.S.: Separation of 1-butanol by pervaporation using a novel tri-layer PDMS composite membrane. J. Membr. Sci. 363, 287–294 (2010)CrossRefGoogle Scholar
  17. Maddox, I.S.: Use of silicalite for the adsorption of n-butanol from fermentation liquids. Biotechnol. Lett. 4, 759–760 (1982)CrossRefGoogle Scholar
  18. Meagher, M.M., Qureshi, N., Hutkins, R.: Silicalite membrane and method for the selective recovery and concentration of acetone and butanol from model ABE solutions and fermentation broth. US patent 5755967, 1998Google Scholar
  19. Nielsen L., Larsson M., Hoist O., Mattiasson B.: Adsorbents for extractive bioconversion applied to the acetone–butanol fermentation. Appl. Microbiol. Biotechnol. 28, 335–339 (1988)CrossRefGoogle Scholar
  20. Nielsen D.R., Prather, K.J.: In situ product recovery of n-butanol using polymeric resins. Biotechnol. Bioeng. 102, 811–821 (2009)CrossRefGoogle Scholar
  21. Oudshoorn, A., Van der Wielen, L.A.M., Straathof, A.J.J.: Assessment of options for selective 1-butanol recovery from aqueous solution. Ind. Eng. Chem. Res. 48, 7325–7336 (2009a)CrossRefGoogle Scholar
  22. Oudshoorn, A., Van der Wielen, L.A.M., Straathof, A.J.J.: Adsorption equilibria of bio-based butanol solutions using zeolite. Biochem. Eng. J. 48, 99–103 (2009b)CrossRefGoogle Scholar
  23. Oudshoorn, A., Van der Wielen, L.A.M., Straathof, A.J.J.: Desorption of butanol from zeolite material. Biochem. Eng. J. 67, 167–172 (2012)CrossRefGoogle Scholar
  24. Qureshi, N., Blaschek, H.P.: Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation. Biotechnol. Prog. 15, 594-602 (1999)CrossRefGoogle Scholar
  25. Qureshi N., Hughes S., Maddox I.S., Cotta M.A.: Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess Biosyst. Eng. 27, 215–222 (2005)CrossRefGoogle Scholar
  26. Qureshi N., Ezeji, T.C.: Butanol, ‘superior biofuel’ production from agricultural residues (renewable biomass): Recent progress in technology. Biofuels Bioprod. Bioref. 2, 319–330 (2008)CrossRefGoogle Scholar
  27. Regdon I., Kiraly, Z., Dekany I., Lagaly G.: Adsorption of 1-butanol from water on modified silicate surfaces. Colloid Polym. Sci. 272, 1129–1135 (1994)CrossRefGoogle Scholar
  28. Regdon I., Dekany I., Lagaly G.: A new way for calculating the adsorption capacity from surface excess isotherms. Colloid Polym. Sci. 276, 511–517 (1994)CrossRefGoogle Scholar
  29. Remi, J.C.S., Rémy, T., Van Hunskerken, V., Van de Perre, S., Duerinck, T., Maes, M., De Vos, D., Gobechiya, E., Kirschock, C.E.A., Baron, G.V., Denayer, J.F.M.: Biobutanol separation with the metal-organic framework ZIF-8. ChemSusChem 4, 1074–1077 (2011)CrossRefGoogle Scholar
  30. Remi, J.C.S., Baron, G.V., Denayer, J.F.M.: Adsorptive separation for the recovery and purification of biobutanol. Adsorption 18, 367–373 (2012)CrossRefGoogle Scholar
  31. Saravanan, V., Waijers D.A., Ziari M., Noordermeer M.A.: Recovery of 1-butanol from aqueous solutions using zeolite ZSM-5 with a high Si/Al ratio; suitability of a column process for industrial applications. Biochem. Eng. J. 49, 33–39 (2010)CrossRefGoogle Scholar
  32. Shapovalov, O.I., Ashkinazi, L.A.: Biobutanol: Biofuel of second generation. Russ. J. Appl. Chem. 81(12), 2232–2236 (2008)CrossRefGoogle Scholar
  33. Sharma, P., Chung, W.J.: Synthesis of MEL type zeolite with different kinds of morphology for the recovery of 1-butanol from aqueous solution. Desalination 275, 172–180 (2011)CrossRefGoogle Scholar
  34. Sowerby, B., Crittenden B.D.: Vapour phase separation of alcohol-water mixtures by adsorption onto silicalite. Gas Sep. Purif. 2, 177–183 (1988)CrossRefGoogle Scholar
  35. Takeuchi, Y., Iwamotob, H., Miyata, M., Seiichi Asano, S., Haradac, M.: Adsorption of l-butanol and p-xylene vapour with high silica zeolites and their mixtures. Sep. Technol. 5, 23–34 (1995)CrossRefGoogle Scholar
  36. Thirmal, C., Dahman, Y.: Comparison of existing pretreatment, saccharification, and fermentation processes for butanol production from agricultural residues. Can. J. Chem. Eng. 90, 745–761 (2012)CrossRefGoogle Scholar
  37. Thompson, A.B., Cope, S.J., Swift, T.D., Notestein, J.M.: Adsorption of n-butanol from dilute aqueous solution with grafted calixarenes. Langmuir 27, 11990–11998 (2011)CrossRefGoogle Scholar
  38. Tong C., Bai Y., Wu J., Zhang L., Yang L., Qian J.: Pervaporation recovery of acetone–butanol from aqueous solution and fermentation broth using HTPB-based polyurethaneurea membranes. Sep. Sci. Technol. 45, 751–761 (2010)CrossRefGoogle Scholar
  39. Yang X., Tsai GJ., Tsao GT.: Enhancement of in situ adsorption on the acetone-butanol fermentation by Clostridium acetobutylicum. Sep. Technol. 4, 81–92 (1994)CrossRefGoogle Scholar
  40. Zheng, Y.N., Li, L.Z., Xian, M., Ma, Y.J., Yang, J.M., Xu, X., He, D.Z.: Problems with the microbial production of butanol. J. Ind. Microbiol. Biotechnol. 36, 1127–1138 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Chemical and Biological Engineering DepartmentUniversity of OttawaOttawaCanada

Personalised recommendations