, Volume 20, Issue 1, pp 157–171 | Cite as

Adsorption of CO2 and N2 in Na–ZSM-5: effects of Na+ and Al content studied by Grand Canonical Monte Carlo simulations and experiments

  • David Newsome
  • Sofranita Gunawan
  • Gino Baron
  • Joeri Denayer
  • Marc-Olivier Coppens


Zeolite crystals with cations present, such as ZSM-5, are widely used for gas sequestration, separations, and catalysis. One possible application is as an adsorbent to separate CO2 from N2 in flue gas mixtures. Typically, the zeolite framework is of a SiO2 composition, but tetravalent Si atoms can be replaced with trivalent Al atoms. This change in valence creates a charge deficit, requiring cations to maintain the charge balance. Experimental studies have demonstrated that cations enhance adsorption of polar molecules due to strong electrostatic interactions. While numerous adsorption studies have been performed for silicalite-1, the all-silica form of ZSM-5, fewer studies on ZSM-5 have been performed. Grand Canonical Monte Carlo simulations were used to study adsorption of CO2 and N2 in Na–ZSM-5 at T = 308 K, which is ZSM-5 with Na+ counter-ions present. The simulations suggest that a lower Si/Al ratio (or higher Na+ and Al content) substantially increases adsorption at low pressures. At high pressures, however, the effect of the Al substitutions is minor, because the Al/Na+ sites are saturated with guest molecules. Similarly, a lower Si/Al ratio also increases the isosteric heat of adsorption at low loading, but the isosteric heats approach the silicalite-1 reference values at higher loadings. Comparison of simulations and experimental measurements of the adsorption isotherms and isosteric heats points to the importance of carefully considering the role of charge on the Na+ cations, and suggest that the balancing cations in ZSM-5, here Na+, only have partial charges.


Carbon dioxide Nitrogen Zeolite Adsorption Grand Canonical Monte Carlo Sodium cations 



D. Newsome and M.-O. Coppens gratefully acknowledge funding from the European Union via STREP Project 014032, FUSION (Fundamental Studies of Transport in Inorganic Nanostructures), discussions with T. Vlugt (Delft University of Technology) and F. Siperstein (University of Manchester), and computational time at Delft University of Technology and at the Computational Center for Nanotechnology Innovations (CCNI) of Rensselaer Polytechnic Institute.

Supplementary material

10450_2013_9560_MOESM1_ESM.xlsx (43 kb)
Supplementary material 1 (XLSX 42 kb)
10450_2013_9560_MOESM2_ESM.xlsx (109 kb)
Supplementary material 2 (XLSX 108 kb)


  1. Alvarado-Swaisgood, A., Barr, M.K., Hay, P.J., Redondo, A.: Ab initio quantum chemical calculations of aluminum substitution in zeolite ZSM-5. J. Phys. Chem. 95, 10031–10036 (1991)CrossRefGoogle Scholar
  2. Beerdsen, E., Dubbeldam, D., Smit, B., Vlugt, T.J.H., Calero, S.: Simulating the effect of nonframework cations on the adsorption of alkanes in MFI-type zeolites. J. Phys. Chem. B 107, 12088–12096 (2003)CrossRefGoogle Scholar
  3. Beerdsen, E., Smit, B., Calero, S.: The influence of non-framework sodium cations on the adsorption of alkanes in MFI- and MOR-type zeolites. J. Phys. Chem. B 106, 10659–10667 (2002)CrossRefGoogle Scholar
  4. Bernal, M.P., Coronas, J., Menendez, M., Santamaria, J.: Separation of CO2/N2 mixtures using MFI-type zeolite membranes. AIChE J. 50, 127–135 (2004)CrossRefGoogle Scholar
  5. Bobuatong, K., Limtrakul, J.: Effects of the zeolite framework on the adsorption of ethylene and benzene on alkali-exchanged zeolites: an ONIOM study. Appl. Catal. A 253, 49–64 (2003)CrossRefGoogle Scholar
  6. Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., Hausler, R.: Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 9, 013007–013114 (2008)CrossRefGoogle Scholar
  7. Bowen, T.C., Li, S., Noble, R.D., Falconer, J.L.: Driving force for pervaporation through zeolite membranes. J. Membr. Sci. 225, 165–176 (2003)CrossRefGoogle Scholar
  8. Calleja, G., Pau, J., Calles, J.A.: Pure and multicomponent adsorption equilibrium of carbon dioxide, ethylene, and propane on ZSM-5 zeolites with different Si/Al ratios. J. Chem. Eng. Data 43, 994–1003 (1998)CrossRefGoogle Scholar
  9. Coppens, M.-O., Bell, A.T., Chakraborty, A.K.: Dynamic Monte Carlo and mean field study of the effect of strong adsorption sites on self-diffusion in zeolites. Chem. Eng. Sci. 54, 3455–3463 (1999)CrossRefGoogle Scholar
  10. Coppens, M.-O., Bell, A.T., Chakraborty, A.K.: Effects of topology and molecular occupancy on self-diffusion in lattice models of zeolites—Monte-Carlo simulations. Chem. Eng. Sci. 53, 2053–2061 (1998)CrossRefGoogle Scholar
  11. Coppens, M.-O., Iyengar, V.: Testing the consistency of the Maxwell–Stefan formulation when predicting self-diffusion in zeolites with strong adsorption sites. Nanotechnology 16, 442–448 (2005)CrossRefGoogle Scholar
  12. Couck, S., Remy, T., Baron, G.V., Gascon, J., Kapteijn, F., Denayer, J.: A pulse chromatographic study of the adsorption properties of the amino-MIL-53 (AI) metal–organic framework. Phys. Chem. Chem. Phys. 12, 9413–9418 (2010)CrossRefGoogle Scholar
  13. Danilczuk, M., Pogocki, D., Lund, A.: Interaction of (CH2OH) with silver cation in Ag-A/CH3OH zeolite: a DFT study. Chem. Phys. Lett. 469, 153–156 (2009)CrossRefGoogle Scholar
  14. Duerinck, T., Couck, S., Vermoortele, F., De Vos, D.E., Baron, G.V., Denayer, J.: Pulse gas chromatography study of adsorption of substituted aromatics and heterocyclic molecules on MIL-47 at zero coverage. Langmuir 28, 13883–13891 (2012)CrossRefGoogle Scholar
  15. Dunne, J.A., Mariwals, R., Rao, R., Sircar, S., Gorte, R.J., Myers, A.L.: Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite. Langmuir 12, 5888–5895 (1996a)CrossRefGoogle Scholar
  16. Dunne, J.A., Rao, R., Sircar, S., Gorte, R.J., Myers, A.L.: Calorimetric heats of adsorption and adsorption isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, HZSM-5, and NaZSM-5 zeolites. Langmuir 12, 5896–5904 (1996b)CrossRefGoogle Scholar
  17. Düren, T., Sarkisov, L., Yaghi, O.M., Snurr, R.Q.: Design of new materials for methane storage. Langmuir 20, 2683–2689 (2004)CrossRefGoogle Scholar
  18. Egerton, T.A., Stone, F.S.: Adsorption of carbon monoxide by calcium-exchanged zeolite Y. Trans. Faraday Soc. 66, 2364–2377 (1970)CrossRefGoogle Scholar
  19. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications, vol. 2. Academic Press, London, UK (2002)Google Scholar
  20. Gallo, M., Nenoff, T.M., Mitchell, M.C.: Selectivities for binary mixtures of hydrogen/methane and hydrogen/carbon dioxide in silicalite and ETS-10 by Grand Canonical Monte Carlo techniques. Fluid Phase Equilib. 247, 135–142 (2006)CrossRefGoogle Scholar
  21. Garcia-Perez, E., Parra, J.B., Ania, C.O., Garcia-Sanchez, A., van Baten, J.M., Krishna, R., Dubbeldam, D., Calero, S.: A computational study of CO2, N2, and CH4 adsorption in zeolites. Adsorption 13, 469–476 (2007)CrossRefGoogle Scholar
  22. Goj, A., Sholl, D., Akten, E.D., Kohen, D.: Atomistic simulations of CO2 and N2 adsorption in silica zeolites: the impact of pore size and shape. J. Phys. Chem. B 106, 8367–8375 (2002)CrossRefGoogle Scholar
  23. Harlick, P.J.E., Tezel, F.H.: Adsorption of carbon dioxide, methane, and nitrogen: pure and binary mixture adsorption by ZSM-5 with SiO2/Al2O3 ratio of 30. Sep. Sci. Technol. 37, 33–60 (2002)CrossRefGoogle Scholar
  24. Harlick, P.J.E., Tezel, F.H.: Adsorption of carbon dioxide, methane and nitrogen: pure and binary mixture adsorption for ZSM-5 with SiO2/Al2O3 ratio of 280. Sep. Purif. Technol. 33, 199–210 (2003)CrossRefGoogle Scholar
  25. Harlick, P.J.E., Tezel, F.H.: An experimental adsorbent screening study for CO2 removal from N2. Microporous Mesoporous Mater. 76, 71–79 (2004)CrossRefGoogle Scholar
  26. Heuchel, M., Snurr, R.Q., Buss, E.: Adsorption of CH4–CF4 mixtures in silicalite: simulation, experiment, and theory. Langmuir 13, 6795–6804 (1997)CrossRefGoogle Scholar
  27. Himeno, S., Tomita, T., Suzuki, K., Nakayama, K., Yajima, K., Yoshida, S.: Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Ind. Eng. Chem. Res. 46, 6989–6997 (2007)CrossRefGoogle Scholar
  28. Hirotani, A., Mizukami, K., Miura, R., Takaba, H., Miya, T., Fahmi, A., Stirling, A., Kubo, M., Miyamoto, A.: Grand Canonical Monte Carlo simulation of the adsorption of CO2 on silicalite and Na–ZSM-5. Appl. Surf. Sci. 120, 81–84 (1997)CrossRefGoogle Scholar
  29. Jaramillo, E., Chandross, M.: Adsorption of small molecules in LTA zeolites. 1. NH3, CO2, and H2O in zeolite 4A. J. Phys. Chem. B 108, 20155–20159 (2004)CrossRefGoogle Scholar
  30. June, R.L., Bell, A.T., Theodorou, D.: Prediction of low occupancy sorption of alkanes in silicalite. J. Phys. Chem. 94, 1508–1516 (1990)CrossRefGoogle Scholar
  31. Kärger, J., Ruthven, D.: Diffusion in Zeolites and Other Microporous Materials. Wiley, New York (1992)Google Scholar
  32. Katoh, M., Yamazaki, T., Ozawa, S.: IR spectroscopic study of adsorption of binary gases over ion-exchanged ZSM-5 zeolites. J. Colloid Interface Sci. 203, 447–455 (1998)CrossRefGoogle Scholar
  33. Katoh, M., Yoshikawa, T., Tomonari, T., Katayama, K., Tomida, T.: Adsorption characteristics of ion-exchanged ZSM-5 zeolites for CO2/N2 mixtures. J. Colloid Interface Sci. 226, 145–150 (2000)CrossRefGoogle Scholar
  34. Keil, F.J., Krishna, R., Coppens, M.-O.: Modeling of diffusion in zeolites. Rev. Chem. Eng. 16, 71–197 (2000)CrossRefGoogle Scholar
  35. Kusakabe, K., Kuroda, T., Morooka, S.: Separation of carbon dioxide from nitrogen using ion-exchanged faujasite-type zeolite membranes formed on porous support tubes. J. Membr. Sci. 148, 13–23 (1998)CrossRefGoogle Scholar
  36. Lachet, V., Boutin, A., Tavitian, B., Fuchs, A.: Grand Canonical Monte Carlo simulations of adsorptions of mixtures of xylene molecules in faujasite zeolites. Faraday Discuss. 106, 307–323 (1997)CrossRefGoogle Scholar
  37. Liu, S., Yang, X.: Gibbs ensemble Monte Carlo simulation of supercritical CO2 adsorption on NaA and NaX zeolites. J. Chem. Phys. 124, 244705-1–244705-10 (2006)Google Scholar
  38. Liu, X., Newsome, D., Coppens, M.-O.: Dynamic Monte Carlo simulations of binary self-diffusion in ZSM-5. Microporous Mesoporous Mater. 125, 149–159 (2009)CrossRefGoogle Scholar
  39. Makrodimitris, K., Papadopoulos, G.K., Theodorou, D.: Prediction of permeation properties of CO2 and N2 through silicalite via molecular simulations. J. Phys. Chem. B 105, 777–788 (2001)CrossRefGoogle Scholar
  40. Maurin, G., Llewellyn, Ph., Poyet, Th., Kuchta, B.: Influence of extra-framework cations on the adsorption properties of X-faujasite systems: microcalorimetry and molecular simulations. J. Phys. Chem. B 109, 125–129 (2005)CrossRefGoogle Scholar
  41. Mikosch, H., Uzunova, E.L., Nikolov, G.S.: Interaction of molecular nitrogen and oxygen with extraframework cations in zeolites with double six-membered rings of oxygen-bridged silicon and aluminum atoms: a DFT study. J. Phys. Chem. B 109, 11119–11125 (2005)CrossRefGoogle Scholar
  42. Mu, B., Schenecker, P.M., Walton, K.S.: Gas adsorption study on mesoporous metal–organic framework UMCM-1. J. Phys. Chem. C 114, 6464–6471 (2010)CrossRefGoogle Scholar
  43. Myers, A.L.: Thermodynamics of adsorption in porous materials. AIChE J. 48, 145–160 (2002)CrossRefGoogle Scholar
  44. Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11, 121–126 (1965)CrossRefGoogle Scholar
  45. Noack, M., Kölsch, P., Caro, J., Schneider, M., Toussaint, P., Sieber, I.: MFI membranes of different Si/Al ratios for pervaporation and steam permeation. Microporous Mesoporous Mater. 35–36, 253–265 (2000)CrossRefGoogle Scholar
  46. Pan, L., Sander, M.B., Huang, X.Y., Li, J., Smith, M., Bittner, E., Bockrath, B., Johnson, J.K.: Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. J. Am. Chem. Soc. 126, 1308–1309 (2004)CrossRefGoogle Scholar
  47. Papadopoulos, G.K., Jobic, H., Theodorou, D.: Transport diffusivity of N2 and CO2 in silicalite: coherent quasielastic neutron scattering measurements and molecular dynamics simulations. J. Phys. Chem. B 108, 12748–12756 (2004)CrossRefGoogle Scholar
  48. Pillai, R.S., Peter, S.A., Jasra, R.V.: Correlation of sorption behavior of nitrogen, oxygen, and argon with Ca2+ locations in zeolite A: a Grand Canonical Monte Carlo simulation study. Langmuir 23, 8899–8908 (2007)CrossRefGoogle Scholar
  49. Pillai, R.S., Sethia, G., Jasra, R.V.: Sorption of CO, CH4, and N2 in alkali metal ion exchanged zeolite-X: Grand Canonical Monte Carlo simulation and volumetric measurements. Ind. Eng. Chem. Res. 49, 5816–5825 (2010)CrossRefGoogle Scholar
  50. Sanchez, A.G., Ania, C.O., Parra, J.B., Dubbeldam, D., Vlugt, T.J.H., Krishna, R., Calero, S.: Transferable force field for carbon dioxide adsorption in zeolites. J. Phys. Chem. C 113, 8814–8820 (2009)CrossRefGoogle Scholar
  51. Selassie, D., Davis, D., Dahlin, J., Feise, E., Haman, G., Sholl, D., Kohen, D.: Atomistic simulations of CO2 and N2 diffusion in silica zeolites: the impact of pore size and shape. J. Phys. Chem. C 112, 16521–16531 (2008)CrossRefGoogle Scholar
  52. Siriwardane, R.V., Shen, M.S., Fisher, E.P., Poston, J.A.: Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 15, 279–284 (2001)CrossRefGoogle Scholar
  53. Sklenak, S., Dedecek, J., Li, C., Wichterlova, B., Gabova, V., Sierka, M., Sauer, J.: Aluminum siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations. Phys. Chem. Chem. Phys. 11, 1237–1247 (2009)CrossRefGoogle Scholar
  54. Skoulidas, A.I., Sholl, D.: Molecular dynamics simulations of self-diffusivities, corrected-diffusivities, and transport-diffusivities of light gases in four silica zeolites to assess influences of pore shape and connectivity. J. Phys. Chem. A 107, 10132–10141 (2003)CrossRefGoogle Scholar
  55. Skoulidas, A.I., Sholl, D.S.: Transport diffusivities of CH4, CF4, He, Ne, Ar, Xe, and SF6 in silicalite from atomistic simulations. J. Phys. Chem. B 106, 5058–5067 (2002)CrossRefGoogle Scholar
  56. Smit, B., Maesen, T.L.M.: Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. Chem. Rev. 108, 4125–4184 (2008)CrossRefGoogle Scholar
  57. Stave, M.S., Nicholas, J.B.: Density functional studies of zeolites. 2. Structure and acidity of [T]–ZSM-5 models (T = B, Al, Ga, Fe). J. Phys. Chem. 99, 15046–15061 (1995)CrossRefGoogle Scholar
  58. Sun, M.S., Shah, D.B., Xu, H., Talu, O.: Adsorption equilibria of C1 to C4 alkanes, CO2, and SF6 on silicalite. J. Phys. Chem. B 102, 1466–1473 (1998)CrossRefGoogle Scholar
  59. van Koningsveld, H., van Bekkum, H., Jansen, J.C.: On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy. Acta. Crystallogr. B43, 127–132 (1987)CrossRefGoogle Scholar
  60. Vlugt, T.J.H., van der Eerden, J.P.J.M., Dijkstra, M., Smit, B., Frenkel, D.: Introduction to Molecular Simulation and Statistical Thermodynamics, vol. 2. Technical University of Delft, Delft, The Netherlands (2008).
  61. Walton, K.S., Abney, M.B., LeVan, D.: CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater. 91, 78–84 (2006)CrossRefGoogle Scholar
  62. Wirawan, S.K., Creaser, D.: CO2 Adsorption on silicalite-1 and cation exchanged ZSM-5 zeolites using a step change method. Microporous Mesoporous Mater. 91, 196–205 (2006a)CrossRefGoogle Scholar
  63. Wirawan, S.K., Creaser, D.: Multicomponent H2/CO/CO2 adsorption on BaZSM-5 zeolite. Sep. Purif. Technol. 52, 224–231 (2006b)CrossRefGoogle Scholar
  64. Xu, J., Mojet, B.L., van Ommen, J.G., Lefferts, L.: Effect of Ca2+ position in zeolite Y on selective oxidation of propane at room temperature. J. Phys. Chem. B 108, 15728–15734 (2004)CrossRefGoogle Scholar
  65. Yamazaki, T., Katoh, M., Ozawa, S., Ogino, Y.: Adsorption of CO2 over univalent cation-exchanged ZSM-5 zeolites. Mol. Phys. 80, 313–324 (1993)CrossRefGoogle Scholar
  66. Yang, G., Wang, Y., Zhou, D., Liu, X., Han, X., Bao, X.: Density functional theory calculations on various M/ZSM-5 zeolites: interaction with probe molecule H2O and relative hydrothermal stability predicted by binding energies. J. Mol. Catal. A 237, 36–44 (2005)CrossRefGoogle Scholar
  67. Yun, J.H., Düren, T., Keil, F.J., Seaton, N.A.: Adsorption of methane, ethane, and their binary mixtures on MCM-41: experimental evaluation of methods for their prediction of adsorption equilibrium. Langmuir 18, 2693–2701 (2002)CrossRefGoogle Scholar
  68. Zhou, Z., Yang, J., Zhang, Y., Chang, L., Sun, W., Wang, J.: NaA zeolite/carbon nanocomposite thin films with high permeance for CO2/N2 separation. Sep. Purif. Technol. 55, 392–395 (2007)CrossRefGoogle Scholar
  69. Zhu, W.D., Hrabanek, P., Gora, L., Kapteijn, F., Moulijn, J.A.: Role of adsorption in the permeation of CH4 and CO2 through a silicalite-1 membrane. Ind. Eng. Chem. Res. 45, 767–776 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • David Newsome
    • 1
    • 4
  • Sofranita Gunawan
    • 1
  • Gino Baron
    • 2
  • Joeri Denayer
    • 2
  • Marc-Olivier Coppens
    • 1
    • 3
    • 5
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.Department of Chemical EngineeringVrije Universiteit BrusselBrusselsBelgium
  3. 3.Howard P. Isermann Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyUSA
  4. 4.CFD Research CorporationHuntsvilleUSA
  5. 5.Department of Chemical EngineeringUniversity College LondonLondonUK

Personalised recommendations