, Volume 20, Issue 1, pp 91–107 | Cite as

Discrete element simulation of the dynamics of adsorbents in a radial flow reactor used for gas prepurification

  • Olivier Dubé
  • Mark Ackley
  • Cem Celik
  • Jamal Chaouki
  • François Bertrand


Radial flow reactors (RFR) are used in thermal swing adsorption (TSA) processes for gas prepurification. The aim of this work is to show the validity of the discrete element method (DEM) to simulate the effect of thermal expansion and contraction cycles occurring in such processes on the packed bed of RFR reactors. Both mono-layered and bi-layered packed beds of adsorbents are investigated. A DEM-based model of a full-scale size unit was developed, the parameters of which were calibrated by means of particle-scale experimental measurements and simple auxiliary DEM simulations. The DEM-based model used is isothermal and the thermal expansion and contraction phenomena are modelled through the displacement of the inner and outer walls of the computational domain. First, the accuracy of this model is assessed using analytical values of the static wall pressure (i.e. with no wall motion) as well as experimental measurements of the dynamic wall pressure (i.e. with wall motion) of a bi-layered bed. Next, simulation results for a few process cycles in the case of a bi-layered packed bed indicates that little mixing occurs at the interface between the two types of adsorbents. To our knowledge, this is the first time that simulation is used to investigate the behavior of the packed bed of a RFR in a TSA process. The results obtained with the proposed model show that the DEM is a valuable tool for the investigation of such slow dynamical processes, provided a careful calibration is done.


Discrete element simulation Radial flow reactor Packed bed Thermal swing adsorption 



The financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and PRAXAIR Inc. is gratefully acknowledged. All simulations were made possible thanks to the computational resources of Compute Canada.


  1. Ackley, M.W., Celik, C.E., Nowobilski, J.J., Schneider, J.S.: Radial flow reactor. US 8,101,133 B2, 24 Jan (2012)Google Scholar
  2. Akseli, I., Cetinkaya, C.: Drug tablet thickness estimations using air-coupled acoustics. Int. J. Pharm. 351(1–2), 165–173 (2008)CrossRefGoogle Scholar
  3. Balevicius, R., Sielamowicz, I., Mroz, Z., Kacianauskas, R.: Investigation of wall stress and outflow rate in a flat-bottomed bin: a comparison of the DEM model results with the experimental measurements. Powder Technol. 214(3), 322–336 (2011)CrossRefGoogle Scholar
  4. Bertrand, F., Gange, T., Desaulniers, E., Vidal, D., Hayes, R.E.: Simulation of the consolidation of paper coating structures: probabilistic versus deterministic models. Comput. Chem. Eng. 28(12), 2595–2604 (2004)CrossRefGoogle Scholar
  5. Bertrand, F., Leclaire, L.A., Levecque, G.: DEM-based models for the mixing of granular materials. Chem. Eng. Sci. 60, 2517–2531 (2005)CrossRefGoogle Scholar
  6. Celik, C.E., Ackley, M.W.: Radial bed vessels having uniform flow distribution. US 8,313,561 B2, 20 Nov (2012)Google Scholar
  7. Cetinkaya, C.: Accoustic Measurement of Young’s Modulus and Poisson’s Ratio for Adsorbents Beads. In: unpublished Praxair Project Progress Report (375–35322), Clarkson University. (2009)Google Scholar
  8. Couroyer, C., Ning, Z., Ghadiri, M., Brunard, N., Kolenda, F., Bortzmeyer, D., Laval, P.: Breakage of macroporous alumina beads under compressive loading: simulation and experimental validation. Powder Technol. 105, 57–65 (1999)CrossRefGoogle Scholar
  9. Cundall, P.A., Strack, O.D.L.: Discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  10. Einstein, A.: Motion of suspended particles on the kinetic theory. Ann. Phys. 17(3), 549–560 (1905)CrossRefGoogle Scholar
  11. Fraige, F.Y., Langston, P.A.: Integration schemes and damping algorithms in distinct element models. Adv. Powder Technol. 15(2), 227–245 (2004)CrossRefGoogle Scholar
  12. Goda, T.J., Ebert, F.: Three-dimensional discrete element simulations in hoppers and silos. Powder Technol. 158(1–3), 58–68 (2005)CrossRefGoogle Scholar
  13. Gonzalez-Montellano, C., Gallego, E., Ramirez-Gomez, A., Ayuga, F.: Three dimensional discrete element models for simulating the filling and emptying of silos: analysis of numerical results. Comput. Chem. Eng. 40, 22–32 (2012a)CrossRefGoogle Scholar
  14. Gonzalez-Montellano, C., Ramirez, A., Fuentes, J.M., Ayuga, F.: Numerical effects derived from en masse filling of agricultural silos in DEM simulations. Comput. Electron. Agric. 81, 113–123 (2012b)CrossRefGoogle Scholar
  15. Gonzalez-Montellano, C., Ramirez, A., Gallego, E., Ayuga, F.: Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silos. Chem. Eng. Sci. 66(21), 5116–5126 (2011)CrossRefGoogle Scholar
  16. Hartl, J., Ooi, J.Y.: Experiments and simulations of direct shear tests: porosity, contact friction and bulk friction. Granul. Matter 10(4), 263–271 (2008)CrossRefGoogle Scholar
  17. Heggs, P.J., Ellis, D.I., Ismail, M.S.: Modelling of fluid-flow distributions in annular packed beds. Gas Sep. Purif. 8(4), 257–264 (1994)CrossRefGoogle Scholar
  18. Heggs, P.J., Ellis, D.I., Ismail, M.S.: Evaluation of pressure profiles and overall pressure drop for flow through annular packed bed configurations. Gas Sep. Purif. 9(3), 171 (1995a)CrossRefGoogle Scholar
  19. Heggs, P.J., Ellis, D.I., Ismail, M.S.: Prediction of flow distributions and pressure changes in multi-layered annular packed beds. Gas Sep. Purif. 9(4), 243 (1995b)CrossRefGoogle Scholar
  20. Hidano, T., Nakamura, M., Kawai, M.: Pre-purification unit of cryogenic air separation unit, hydrocarbon adsorbent, and method of pre-treating feed air. US 7,931,736 B2, 26 Apr (2011)Google Scholar
  21. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  22. Kalbassi, M.A., Golden, T.C.: Purification of gases using solid adsorbents. US 5,855,650, 5 Jan (1999)Google Scholar
  23. Kareeri, A.A., Zughbi, H.D., Al-Ali, H.H.: Simulation of flow distribution in radial flow reactors. Ind. Eng. Chem. Res. 45, 2862–2874 (2006)CrossRefGoogle Scholar
  24. Ketterhagen, W.R., Curtis, J.S., Wassgren, C.R., Hancock, B.C.: Predicting the flow mode from hoppers using the discrete element method. Powder Technol. 195(1), 1–10 (2009)CrossRefGoogle Scholar
  25. Ko, D., Kim, M., Moon, I., Choi, D.: Analysis of purge gas temperature in cyclic TSA process. Chem. Eng. Sci. 57(1), 179–195 (2002)CrossRefGoogle Scholar
  26. Kumar, R., Deng, S.: Trace carbon monoxide and hydrogen conversion prior to cryogenic distillation of air. Adsorption 12(5–6), 361–373 (2006)CrossRefGoogle Scholar
  27. Kumar, R., Dissinger, G.R.: Nonequilibrium, nonisothermal desorption of single adsorbate by purge. Ind. Eng. Chem. Process Des. Dev. 25(2), 456–464 (1986)CrossRefGoogle Scholar
  28. Kumar, R., Huggahalli, M., Bülow, M.: Thermal swing adsorption process. US 6,432,171 B1, 13 Aug (2002)Google Scholar
  29. Landry, J.W., Grest, G.S., Plimpton, S.J.: Discrete element simulations of stress distributions in silos: crossover from two to three dimensions. Powder Technol. 139(3), 233–239 (2004)CrossRefGoogle Scholar
  30. Landry, J.W., Grest, G.S., Silbert, L.E., Plimpton, S.J.: Confined granular packings: structure, stress, and forces. Phys. Rev. E (Stat. Nonlinear Soft Matter Phys. 67(4), 41301–41303 (2003)CrossRefGoogle Scholar
  31. Leclaire, L.-A.: Parallélisation de la méthode des éléments discrets appliquée aux écoulements granulaires (Parallelization of the discrete element method applied to granular flows). Mémoire de maîtrise (Ecole polytechnique de Montréal) (2004)Google Scholar
  32. Lemieux, M., Bertrand, F., Chaouki, J., Gosselin, P.: Comparative study of the mixing of free-flowing particles in a V-blender and a bin-blender. Chem. Eng. Sci. 62(6), 1783–1802 (2007)CrossRefGoogle Scholar
  33. Li, C., Cetinkaya, C.: Frequency domain thickness measurement approach for microscale multilayered structures. IEEE Trans. Instrum. Meas. 55(1), 206–211 (2006)CrossRefGoogle Scholar
  34. Li, Y., Xu, Y., Thornton, C.: A comparison of discrete element simulations and experiments for ‘sandpiles’ composed of spherical particles. Powder Technol. 160(3), 219–228 (2005)CrossRefGoogle Scholar
  35. Libal, K., Fierlbeck, W., Von Gemmingen, U.: Adsorption reactor solid cage walls—for minimal erosion of contained solids during adaptation to temp. Change by inherent expansion of the walls. US 5,827,485, 27 Oct (1998)Google Scholar
  36. Lobanov, E.L., Skipin, Y.A.: Increasing the operating efficiency of radial reactors in reforming. Chem. Technol. Fuels Oils 22(5–6), 275–278 (1986)CrossRefGoogle Scholar
  37. Masson, S., Martinez, J.: Effect of particle mechanical properties on silo flow and stresses from distinct element simulations. Powder Technol. 109(1–3), 164–178 (2000)CrossRefGoogle Scholar
  38. Nedderman, R.M.: Statics and Kinematics of Granular Materials, Digitally printed 1st pbk edn. Cambridge University Press, Cambridge (2005)Google Scholar
  39. Ponzi, P.R., Kaye, L.A.: Effect of flow maldistribution on conversion and selectivity in radial flow fixed-bed reactors. AIChE J. 25(1), 100–108 (1979)CrossRefGoogle Scholar
  40. Rapaport, D.C.: Radial and axial segregation of granular matter in a rotating cylinder: a simulation study. Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 75(3), 31301 (2007)CrossRefGoogle Scholar
  41. Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)Google Scholar
  42. Schneider, J.S., Smolarek, J., Ackley, M.W., Nowobilski, J.J.: Assembly and method for loading particles into a vessel. US 5,836,362-A, 17 Nov (1998)Google Scholar
  43. Seader, J.D., Henley, E.J.: Separation Process Principles. Wiley, New York (1998)Google Scholar
  44. Sondergaard, R., Chaney, K., Brennen, C.E.: Measurements of solid spheres bouncing off flat plates. J. Appl. Mech. Trans. ASME 57(3), 694–699 (1990)CrossRefGoogle Scholar
  45. Sudah, O.S., Arratia, P.E., Alexander, A., Muzzio, F.J.: Simulation and experiments of mixing and segregation in a tote blender. AIChE J. 51(3), 836–844 (2005)CrossRefGoogle Scholar
  46. Tsuji, Y., Tanaka, T., Ishida, T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71(3), 239–250 (1992)CrossRefGoogle Scholar
  47. Zhou, Y.C., Wright, B.D., Yang, R.Y., Xu, B.H., Yu, A.B.: Rolling friction in the dynamic simulation of sandpile formation. Phys. A 269(2), 536–553 (1999)CrossRefGoogle Scholar
  48. Zhou, Y.C., Xu, B.H., Yu, A.B., Zulli, P.: Numerical investigation of the angle of repose of monosized spheres. Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 64(2 I), 213011–213018 (2001)Google Scholar
  49. Zhou, Y.C., Xu, B.H., Yu, A.B., Zulli, P.: An experimental and numerical study of the angle of repose of coarse spheres. Powder Technol. 125(1), 45–54 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Chemical EngineeringEcole Polytechnique de MontréalMontrealCanada
  2. 2.Praxair, Inc.TonawandaUSA

Personalised recommendations