, Volume 19, Issue 6, pp 1165–1180 | Cite as

Capacity and kinetic measurements of methane and nitrogen adsorption on H+-mordenite at 243–303 K and pressures to 900 kPa using a dynamic column breakthrough apparatus

  • Thomas L. H. Saleman
  • Guillaume C. Y. Watson
  • Thomas E. Rufford
  • Paul S. Hofman
  • K. Ida Chan
  • Eric F. May


A dynamic column breakthrough (DCB) apparatus was used to measure the capacity and kinetics of CH4 and N2 adsorption on zeolite H+-mordenite at temperatures in the range 243.8–302.9 K and pressures up to 903 kPa. Equilibrium adsorption capacities of pure CH4 and pure N2 were determined by these dynamic experiments and Langmuir isotherm models were regressed to these pure fluid data over the ranges of temperature and pressure measured. A linear driving force-based model of adsorption in a fixed bed was developed to extract the mass transfer coefficients (MTCs) for CH4 and N2 from the pure gas experimental data. The MTCs determined from single adsorbate experiments were used to successfully predict the component breakthroughs for experiments with equimolar CH4 + N2 gas mixtures in the DCB apparatus. The MTC of CH4 on H+-mordenite at 902 kPa was 0.013 s−1 at 302.9 K and 0.004 s−1 at 243.6 K. The MTC of N2 on H+-mordenite at 902 kPa was 0.011 s−1 at 302.9 K and 0.005 s−1 at 243.5 K. The values of the MTCs measured for each gas at a constant feed gas flow rate were observed to increase in a linear trend with the inverse of pressure. However, the apparent MTCs obtained at the lowest pressures studied (≈105 kPa) were systematically below this linear trend, because of the slightly longer residence time of helium in the mass spectrometer used to monitor effluent composition. Nevertheless, the pure fluid dynamic breakthrough data at these lowest pressures could still be reasonably well described using MTC values estimated from the linear trend. Furthermore, the results of dynamic breakthrough experiments with mixtures were all reliably predicted using the capacity and MTC correlations developed for the pure fluids.


Zeolite Pressure swing adsorption Mass transfer coefficient Linear driving force model Langmuir isotherm Natural gas 



The research was funded by Chevron Energy Technology Company, the Western Australian Energy Research Alliance and the Australian Research Council (Project LP0776928). We thank Craig Grimm for helping to construct the apparatus, as well as David Zhang for his contribution to the research.


  1. Ackley, M.W., Yang, R.T.: Kinetic separation by pressure swing adsorption—method of characteristics model. AIChE J. 36(8), 1229–1238 (1990)CrossRefGoogle Scholar
  2. American Energies Pipeline, LLC: Improve Gas Quality-Nitrogen Rejection Unit. (2011). Accessed 29 Oct 2010
  3. Baker, R.W.: Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41, 1393–1411 (2002)CrossRefGoogle Scholar
  4. Bevington, P.R., Robinson, D.K.: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, Boston (1992)Google Scholar
  5. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley International, New York (2002)Google Scholar
  6. Casas, N., Schell, J., Pini, R., Mazzotti, M.: Fixed bed adsorption of CO2/H2 mixtures on activated carbon: experiments and modeling. Adsorption 18(2), 143–161 (2012). doi: 10.1007/s10450-012-9389-z CrossRefGoogle Scholar
  7. Cavenati, S., Grande, C.A., Rodrigues, A.: Separation of CH4/CO2/N2 mixtures by layered pressure swing adsorption for upgrade of natural gas. Chem. Eng. Sci. 61, 3893–3906 (2006)CrossRefGoogle Scholar
  8. Churchill, S.W., Bernstein, M.: Correlating equation for forced-convection from gases and liquids to a circular-cylinder in cross-flow. J. Heat Transf. 99(2), 300–306 (1977)CrossRefGoogle Scholar
  9. Delgado, J.: A critical review of dispersion in packed beds. Heat Mass Transf. 42, 279–310 (2006). doi: 10.1007/s00231-005-0019-0 CrossRefGoogle Scholar
  10. Delgado, J.A., Uguina, M.A., Gomez, J.M., Ortega, L.: Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na- and H-mordenite at high pressures. Sep. Purif. Technol. 48(3), 223–228 (2006a). doi: 10.1016/j.seppur.2005.07.027 CrossRefGoogle Scholar
  11. Delgado, J.A., Uguina, M.A., Sotelo, J.L., Ruiz, B.: Modelling of the fixed-bed adsorption of methane/nitrogen mixtures on silicalite pellets. Sep. Purif. Technol. 50(2), 192–203 (2006b). doi: 10.1016/j.seppur.2005.11.026 CrossRefGoogle Scholar
  12. Guntuka, S., Farooq, S., Rajendran, A.: A- and B-Site substituted lanthanum cobaltite perovskite as high temperature oxygen sorbent. 2. Column dynamics study. Ind. Eng. Chem. Res. 47(1), 163–170 (2008). doi: 10.1021/ie070860p CrossRefGoogle Scholar
  13. Hofman, P.S., Rufford, T.E., Chan, K.I., May, E.F.: A dynamic column breakthrough apparatus for adsorption capacity measurements with quantitative uncertainties. Adsorption 18(3–4), 251–263 (2012). doi: 10.1007/s10450-012-9398-y CrossRefGoogle Scholar
  14. Jayaraman, A., Hernández-Maldonado, A.J., Yang, R.T., Chinn, D., Munson, C.L., Mohr, D.H.: Clinoptilolites for nitrogen/methane separation. Chem. Eng. Sci. 59, 2407–2417 (2004)CrossRefGoogle Scholar
  15. Jensen, N.K., Rufford, T.E., Watson, G.C.Y., Zhang, D., Chan, K.I., May, E.F.: Screening zeolites for gas separation applications involving methane, nitrogen, and carbon dioxide. J. Chem. Eng. Data 57(1), 106–113 (2012). doi: 10.1021/je200817w Google Scholar
  16. Kast, W.: Adsorption aus der gasphase—ingenieurwissenschaftliche Grundlagen und technische verfahren. VCH, Weinheim (1988)Google Scholar
  17. Kidnay, A.J., Parrish, W.: Fundamentals of Natural Gas Processing. CRC Press, Boca Raton (2006)Google Scholar
  18. Kunz, O., Klimeck, R., Wagner, W., Jaeschke, M.: The GERG-2004 Wide-Range Reference Equation of State for Natural Gases and Other Mixtures. GERG Technical Monograph. In. Fortschr.-Ber. VDI, VDI-Verlag, Düsseldorf (Germany), (2006)Google Scholar
  19. Kuznicki, S.M., Bell, V.A., Petrovic, I., Blosser, P.W.: Separation of nitrogen from mixtures thereof with methane utilizing barium exchanged ETS-4. US Patent 5,989,316 (1999)Google Scholar
  20. Lanfrey, P.Y., Kuzeljevic, Z.V., Dudukovic, M.P.: Tortuosity model for fixed beds randomly packed with identical particles. Chem. Eng. Sci. 65(5), 1891–1896 (2010). doi: 10.1016/j.ces.2009.11.011 CrossRefGoogle Scholar
  21. Lemmon, E.W., Huber, M.L., McLinden, M.O.: REFPROP—Reference Fluid Thermodynamic and Transport Properties. NIST Standard Reference Database 23 (2007)Google Scholar
  22. Malbrunot, P., Vidal, D., Vermesse, J., Chahine, R., Bose, T.K.: Adsorbent helium density measurement and its effect on adsorption isotherms at high pressure. Langmuir 13, 539–544 (1997)CrossRefGoogle Scholar
  23. Malek, A., Farooq, S.: Determination of equilibrium isotherms using dynamic column breakthrough and constant flow equilibrium desorption. J. Chem. Eng. Data 41(1), 25–32 (1996)CrossRefGoogle Scholar
  24. Mitariten, M.: Nitrogen removal from natural gas with the molecular gate™ adsorption process. In: 88th Annual Convention of the Gas Processors Association 2009, San Antonio, TX, 8–11 March 2009, pp. 544–555. Gas Processors AssociationGoogle Scholar
  25. Mohamed, M.M.: Heat capacities, phase transitions and structural properties of cation-exchanged H-mordenite zeolites. Thermochim. Acta 372(1–2), 75–83 (2001)CrossRefGoogle Scholar
  26. Mulgundmath, V.P., Jones, R.A., Tezel, F.H., Thibault, J.: Fixed bed adsorption for the removal of carbon dioxide from nitrogen: breakthrough behaviour and modelling for heat and mass transfer. Sep. Purif. Technol. 85, 17–27 (2012)CrossRefGoogle Scholar
  27. Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11, 121–127 (1965)CrossRefGoogle Scholar
  28. Puértolas, B., Navarro, M.V., Lopez, J.M., Murillo, R., Mastral, A.M., Garcia, T.: Modelling the heat and mass transfer of propane onto a ZSM-5 zeolite. Sep. Purif. Technol. 86, 127–136 (2012)CrossRefGoogle Scholar
  29. Rajendran, A., Kariwala, V., Farooq, S.: Correction procedures for extra-column effects in dynamic column breakthrough experiments. Chem. Eng. Sci. 63(10), 2696–2706 (2008). doi: 10.1016/j.ces.2008.02.023 CrossRefGoogle Scholar
  30. Reid, R.C., Prausnitz, J.M., Poling, B.E.: The Properties of Gases and Liquids, 4th edn. McGraw-Hill, New York (1987)Google Scholar
  31. Schiesser, W.E.: The Numerical Method of Lines. Academic Press, San Diego (1991)Google Scholar
  32. Simo, M., Brown, C.J., Hlavacek, V.: Simulation of pressure swing adsorption in fuel ethanol production process. Comput. Chem. Eng. 32(7), 1635–1649 (2008). doi: 10.1016/j.compchemeng.2007.07.011 CrossRefGoogle Scholar
  33. Sircar, S.: Basic research needs for design of adsorptive gas separation processes. Ind. Eng. Chem. Res. 45(16), 5435–5448 (2006). doi: 10.1021/ie051056a CrossRefGoogle Scholar
  34. Sircar, S., Hufton, J.R.: Why does the linear driving force model for adsorption kinetics work? Adsorption 6(2), 137–147 (2000). doi: 10.1023/A:1008965317983 CrossRefGoogle Scholar
  35. Sudibandriyo, M., Pan, Z., Fitzgerald, J.E., Robinson, R.L., Gasem, K.A.M.: Adsorption of methane, nitrogen, carbon dioxide, and their binary mixtures on dry activated carbon at 318.2 K and pressures up to 13.6 MPa. Langmuir 19(13), 5323–5331 (2003). doi: 10.1021/la020976k Google Scholar
  36. Valenzuela, D.P., Myers, A.L.: Adsorption Equilibrium Data Handbook. Advanced Reference Series. Prentice Hall, Englewood Cliffs (1989)Google Scholar
  37. Warmuzinski, K., Tanczyk, M.: Multicomponent pressure swing adsorption. 1. Modelling of large-scale PSA installations. Chem. Eng. Process. 36(2), 89–99 (1997)CrossRefGoogle Scholar
  38. Watson, G., May, E.F., Graham, B.F., Trebble, M.A., Trengove, R.D., Chan, K.I.: Equilibrium adsorption measurement of pure nitrogen, carbon dioxide, and methane on a carbon molecular sieve at cryogenic temperatures and high pressures. J. Chem. Eng. Data 54, 2701–2707 (2009). doi: 10.1021/je900224w CrossRefGoogle Scholar
  39. Yang, R.T.: Gas Separation by Adsorption Processes. Series on Chemical Engineering, vol. 1. World Scientific, Singapore (1997)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Thomas L. H. Saleman
    • 1
  • Guillaume C. Y. Watson
    • 1
  • Thomas E. Rufford
    • 1
  • Paul S. Hofman
    • 1
  • K. Ida Chan
    • 2
  • Eric F. May
    • 1
  1. 1.Centre for Energy, School of Mechanical and Chemical EngineeringThe University of Western AustraliaCrawleyAustralia
  2. 2.Chevron Energy Technology CompanyHoustonUSA

Personalised recommendations