, Volume 19, Issue 2–4, pp 803–811

A hydrogen sorption study on a Pd-doped CMK-3 type ordered mesoporous carbon

  • D. Giasafaki
  • G. Charalambopoulou
  • A. Bourlinos
  • A. Stubos
  • D. Gournis
  • Th. Steriotis


An ordered mesoporous carbon of CMK-3 type was prepared and modified by metal doping with Pd nanoparticles. The hydrogen sorption performance of the pristine and composite materials was studied at different temperature and pressure conditions in order to provide insight into the underlying storage mechanism. It was shown that metal doping can lead to enhanced hydrogen storage at 298 K as a result of a weak chemisorption process initiated by the so-called “spillover” effect.


Hydrogen storage Ordered mesoporous carbons Metal doped carbons Spillover 


  1. Anbia, M., Mandegarzad, S.: Enhanced hydrogen sorption on modified MIL-101 with Pt/CMK-3 by hydrogen spillover effect. J. Alloys Compd. 532, 61–67 (2012)CrossRefGoogle Scholar
  2. Armandi, M., Bonelli, B., Karaindrou, E.I., Areán, C.O., Garrone, E.: Post-synthesis modifications of SBA-15 carbon replicas: improving hydrogen storage by increasing microporous volume. Catal. Today 138, 244–248 (2008)CrossRefGoogle Scholar
  3. Contescu, C.I., van Benthem, K., Li, S., Bonifacio, C.S., Pennycook, S.J., Jena, P., Gallego, N.C.: Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage. Carbon 49, 4050–4058 (2011)CrossRefGoogle Scholar
  4. De la Casa-Lillo, M.A., Lamari-Darkrim, F., Cazorla-Amorós, D., Linares-Solano, A.: Hydrogen storage in activated carbons and activated carbon fibers. J. Phys. Chem. B 106, 10930–10934 (2002)CrossRefGoogle Scholar
  5. Ding, F., Yakobson, B.I.: Challenges in hydrogen adsorptions: from physisorption to chemisorption. Front. Phys. 6, 142–150 (2011)CrossRefGoogle Scholar
  6. Eastman, J.A., Thompson, L.J., Kestel, B.J.: Narrowing of the palladium-hydrogen miscibility gap in nanocrystalline palladium. Phys. Rev. B 48, 84–92 (1993)CrossRefGoogle Scholar
  7. Fanning, P.E., Vannice, M.A.: A Drifts Study of the Formation of Surface Groups on Carbon by Oxidation. Carbon 31, 721–730 (1993)CrossRefGoogle Scholar
  8. Giasafaki, D., Bourlinos, A., Charalambopoulou, G., Stubos, A., Steriotis, T.: Synthesis and characterisation of nanoporous carbon–metal composites for hydrogen storage. Microporous Mesoporous Mater. 154, 74–81 (2012)CrossRefGoogle Scholar
  9. Giasafaki, D., Bourlinos, A., Charalambopoulou, G., Stubos, A., Steriotis, T.: Nanoporous carbon—metal composites for hydrogen storage. Cent. Eur. J. Chem. 9, 948–952 (2011)CrossRefGoogle Scholar
  10. Gogotsi, Y., Portet, C., Osswald, S., Simmons, J.M., Yildirim, T., Laudisio, G., Fischer, J.E.: Importance of pore size in high-pressure hydrogen storage by porous carbons. Int. J. Hydrogen Energy 34, 6314–6319 (2009)CrossRefGoogle Scholar
  11. Guo, H., Gao, Q.: Cryogenic hydrogen uptake of high surface area porous carbon materials activated by potassium hydroxide. Int. J. Hydrogen Energy 35, 7547–7554 (2010)CrossRefGoogle Scholar
  12. Han, S.S., Jung, H., Jung, D.H., Choi, S.-H., Park, N.: Stability of hydrogenation states of graphene and conditions for hydrogen spillover. Phys. Rev. B 85(155408), 1–5 (2012)Google Scholar
  13. Hirscher, M.: Remarks about spillover and hydrogen adsorption—comments on the contributions of A.V. Talyzin and R.T. Yang. Microporous Mesoporous Mater. 135, 209–210 (2010)CrossRefGoogle Scholar
  14. Ioannatos, G.E., Verykios, X.E.: H2 storage on single- and multi-walled carbon nanotubes. Int. J. Hydrogen Energy 35, 622–628 (2010)CrossRefGoogle Scholar
  15. Jaramillo, J., Álvarez, P.M., Gómez-Serrano, V.: Oxidation of activated carbon by dry and wet methods. Surface chemistry and textural modification. Fuel Process. Technol. 91, 1768–1775 (2010)CrossRefGoogle Scholar
  16. Jiang, J., Gao, Q., Zheng, Z., Xia, K., Hu, J.: Enhanced room temperature hydrogen storage capacity of hollow nitrogen-containing carbon spheres. Int. J. Hydrogen Energy 35, 210–216 (2010)CrossRefGoogle Scholar
  17. Jiménez, V., Ramírez-Lucas, A., Sánchez, P., Valverde, J.L., Romero, A.: Improving hydrogen storage in modified carbon materials. Int. J. Hydrogen Energy 37, 4144–4160 (2012)CrossRefGoogle Scholar
  18. Jun, S., Joo, S.H., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T., Terasaki, O.: Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 122, 10712–10713 (2000)CrossRefGoogle Scholar
  19. Kockrick, E., Schrage, C., Borchardt, L., Klein, N., Rose, M., Senkovska, I., Kaskel, S.: Ordered mesoporous carbide derived carbons for high pressure gas storage. Carbon 48, 1707–1717 (2010)CrossRefGoogle Scholar
  20. Kowalczyk, P., Tanaka, H., Hołyst, R., Kaneko, K., Ohmori, T., Miyamoto, J.: Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation. J. Phys. Chem. B 109, 17174–17183 (2005)CrossRefGoogle Scholar
  21. Kubas, G.J.: Molecular hydrogen complexes: coordination of a σ bond to transition metals. Acc. Chem. Res. 21, 120–128 (1988)CrossRefGoogle Scholar
  22. Lachawiec, A.J., Yang, R.T.: Isotope tracer study of hydrogen spillover on carbon-based adsorbents for hydrogen storage. Langmuir 24, 6159–6165 (2008)CrossRefGoogle Scholar
  23. Lachawiec, A.J., Yang, R.T.: Reverse spillover of hydrogen on carbon-based nanomaterials: evidence of recombination using isotopic exchange. J. Phys. Chem. C 113, 13933–13939 (2009)CrossRefGoogle Scholar
  24. Lee, S.-Y., Park, S.-J.: Preparation and characterization of ordered porous carbons for increasing hydrogen storage behaviors. J. Solid State Chem. 184, 2655–2660 (2011)CrossRefGoogle Scholar
  25. Lee, S.-Y., Park, S.-J.: Influence of oxygen-functional groups on carbon replicas for hydrogen adsorption. Phys. Status Solidi (a) 209, 694–697 (2012). doi:10.1002/pssa.201127518 CrossRefGoogle Scholar
  26. Li, Q., Lueking, A.D.: Effect of surface oxygen groups and water on hydrogen spillover in pt-doped activated carbon. J. Phys. Chem. C 115, 4273–4282 (2011)CrossRefGoogle Scholar
  27. Li, Y., Yang, R.T.: Hydrogen storage on platinum nanoparticles doped on superactivated carbon. J. Phys. Chem. C 111, 11086–11094 (2007)CrossRefGoogle Scholar
  28. Li, Z., Yan, W., Dai, S.: Surface functionalization of ordered mesoporous carbons–a comparative study. Langmuir 21, 11999–12006 (2005)CrossRefGoogle Scholar
  29. Lysenko, N.D., Yaremov, P.S., Shvets, A.V., Il’in, V.G.: Effect of the chemical and structural modification of CMK-3 mesoporous carbon molecular sieve on hydrogen adsorption. Theor. Exp. Chem. 45, 380–385 (2009)CrossRefGoogle Scholar
  30. Lu, A.-H., Li, W.-C., Schmidt, W., Schüth, F.: Template synthesis of large pore ordered mesoporous carbon. Microporous Mesoporous Mater. 80, 117–128 (2005)CrossRefGoogle Scholar
  31. Mitchell, P.C.H., Ramirez-Cuesta, A.J., Parker, S.F., Tomkinson, J., Thompsett, D.: Hydrogen spillover on carbon-supported metal catalysts studied by inelastic neutron scattering. surface vibrational states and hydrogen riding modes. J. Phys. Chem. B 107, 6838–6845 (2003)CrossRefGoogle Scholar
  32. Nishihara, H., Hou, P.-X., Li, L.-X., Ito, M., Uchiyama, M., Kaburagi, T., Ikura, A., Katamura, J., Kawarada, T., Mizuuchi, K., Kyotani, T.: High-pressure hydrogen storage in zeolite-templated carbon. J. Phys. Chem. C 113, 3189–3196 (2009)CrossRefGoogle Scholar
  33. Niu, J., Rao, B.K., Jena, P.: Binding of hydrogen molecules by a transition-metal ion. Phys. Rev. Lett. 68, 2277–2280 (1992)CrossRefGoogle Scholar
  34. Panella, B., Hirscher, M., Roth, S.: Hydrogen adsorption in different carbon nanostructures. Carbon 43, 2209–2214 (2005)CrossRefGoogle Scholar
  35. Prins, R.: Hydrogen spillover Facts and fiction. Chem. Rev. 112, 2714–2738 (2012)CrossRefGoogle Scholar
  36. Psofogiannakis, G.M., Froudakis, G.E.: DFT study of hydrogen storage by spillover on graphite with oxygen surface groups. J. Am. Chem. Soc. 131, 15133–15135 (2009)CrossRefGoogle Scholar
  37. Psofogiannakis, G.M., Steriotis, T.A., Bourlinos, A.B., Kouvelos, E.P., Charalambopoulou, G.C., Stubos, A.K., Froudakis, G.E.: Enhanced hydrogen storage by spillover on metal-doped carbon foam: an experimental and computational study. Nanoscale 3, 933–936 (2011)CrossRefGoogle Scholar
  38. Ryoo, R., Joo, S.H., Kruk, M., Jaroniec, M.: Ordered Mesoporous Carbons. Adv. Mater. 13, 677–681 (2001)CrossRefGoogle Scholar
  39. Ryoo, R., Joo, S.H., Jun, S.: Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 103, 7743–7746 (1999)CrossRefGoogle Scholar
  40. Salvador, F., Montero, J., Sánchez-Montero, M.J., Izquierdo, C.: Mechanism of heterogeneous adsorption in the storage of hydrogen in carbon fibers activated with supercritical water and steam. Int. J. Hydrogen Energy 36, 7567–7579 (2011)CrossRefGoogle Scholar
  41. Shin, H.J., Ryoo, R., Kruk, M., Jaroniec, M.: Modification of SBA-15 pore connectivity by high-temperature calcination investigated by carbon inverse replication. Chem. Commun. 1, 349–350 (2001)CrossRefGoogle Scholar
  42. Stein, B.A., Wang, Z., Fierke, M.A.: Functionalization of porous carbon materials with designed pore architecture. Adv. Mater. 21, 265–293 (2009)CrossRefGoogle Scholar
  43. Stetson, N. T.: Hydrogen storage overview. DoE Annual Merit Review and Peer Evaluation Meeting (2012)Google Scholar
  44. Takagi, H., Hatori, H., Yamada, Y.: Reversible adsorption/desorption property of hydrogen on carbon surface. Carbon 43, 3037–3039 (2005)CrossRefGoogle Scholar
  45. Texier-Mandoki, N., Dentzer, J., Piquero, T., Saadallah, S., David, P., Vix-Guterl, C.: Hydrogen storage in activated carbon materials: role of the nanoporous texture. Carbon 42, 2744–2747 (2004)CrossRefGoogle Scholar
  46. Toebes, M.L., Van Dillen, J.A., De Jong, K.P.: Synthesis of supported palladium catalysts. J. Mol. Catal. A: Chem. 173, 75–98 (2001)CrossRefGoogle Scholar
  47. Tsao, C.-S., Liu, Y., Li, M., Zhang, Y., Leao, J.B., Chang, H.-W., Yu, M.-S., Chen, S.-H.: Neutron scattering methodology for absolute measurement of room-temperature hydrogen storage capacity and evidence for spillover effect in a pt-doped activated carbon. J. Phys. Chem. Lett. 1, 1569–1573 (2010)CrossRefGoogle Scholar
  48. Wang, L., Yang, F.H., Yang, R.T.: Hydrogen storage properties of b- and n-doped microporous carbon. Am. Inst. Chem. Eng. 55, 1823–1833 (2009)CrossRefGoogle Scholar
  49. Wang, L., Yang, R.T.: Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spillover. Catal. Rev. 52, 411–461 (2010)CrossRefGoogle Scholar
  50. Wang, L., Yang, R.T.: Molecular hydrogen and spiltover hydrogen storage on high surface area carbon sorbents. Carbon 50, 3134–3140 (2012)CrossRefGoogle Scholar
  51. Wang, Z., Yang, F.H., Yang, R.T.: Enhanced hydrogen spillover on carbon surfaces modified by oxygen plasma. J. Phys. Chem. C 114, 1601–1609 (2010)CrossRefGoogle Scholar
  52. Xia, K., Gao, Q., Song, S., Wu, C., Jiang, J., Hu, J., Gao, L.: CO2 activation of ordered porous carbon CMK-1 for hydrogen storage. Int. J. Hydrogen Energy 33, 116–123 (2008)CrossRefGoogle Scholar
  53. Xia, K., Gao, Q., Wu, C., Song, S., Ruan, M.: Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3. Carbon 45, 1989–1996 (2007)CrossRefGoogle Scholar
  54. Yang, F.H., Lachawiec, A.J., Yang, R.T.: Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes. J. Phys. Chem. B 110, 6236–6244 (2006)CrossRefGoogle Scholar
  55. Yang, R.T., Chen, H., Diraimondo, T.R., Lachawiec, A.J., Stuckert, N., Wang, L., Wang, Y., et al.: Hydrogen Storage at Ambient Temperature by the Spillover Mechanism. DoE Sci. Tech. Inf. (2011a). doi:10.2172/1004576 Google Scholar
  56. Yang, S.J., Im, J.H., Nishihara, H., Jung, H., Lee, K., Kyotani, T., Park, C.R.: General relationship between hydrogen adsorption capacities at 77 and 298 k and pore characteristics of the porous adsorbents. J. Phys. Chem. C 116, 10529–10540 (2012)CrossRefGoogle Scholar
  57. Yang, Y., Brown, C.M., Zhao, C., Chaffee, A.L., Nick, B., Zhao, D., Webley, P.A., Schalch, J., Simmons, J.M., Liu, Y., Her, J.-H., Buckley, C.E., Sheppard, D.A.: Micro-channel development and hydrogen adsorption properties in templated microporous carbons containing platinum nanoparticles. Carbon 49, 1305–1317 (2011b)CrossRefGoogle Scholar
  58. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.: Triblock copolymer syntheses of mesoporous silica with periodic 50–300 angstrom pores. Science 279, 548–552 (1998a)CrossRefGoogle Scholar
  59. Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., Stucky, G.D.: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998b)CrossRefGoogle Scholar
  60. Zhao, W., Fierro, V., Zlotea, C., Izquierdo, M.T., Chevalier-César, C., Latroche, M., Celzard, A.: Activated carbons doped with Pd nanoparticles for hydrogen storage. Int. J. Hydrogen Energy 37, 5072–5080 (2012)CrossRefGoogle Scholar
  61. Zheng, Z., Gao, Q., Jiang, J.: High hydrogen uptake capacity of mesoporous nitrogen-doped carbons activated using potassium hydroxide. Carbon 48, 2968–2973 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • D. Giasafaki
    • 1
    • 2
  • G. Charalambopoulou
    • 1
  • A. Bourlinos
    • 3
  • A. Stubos
    • 1
  • D. Gournis
    • 2
  • Th. Steriotis
    • 1
  1. 1.National Center for Scientific Research “Demokritos”AthensGreece
  2. 2.Department of Material Science EngineeringUniversity of IoanninaIoanninaGreece
  3. 3.Department of PhysicsUniversity of IoanninaIoanninaGreece

Personalised recommendations