Advertisement

Adsorption

, Volume 19, Issue 2–4, pp 695–700 | Cite as

Fine tuning the surface acidity of titanate nanostructures

  • D. Madarász
  • I. Szenti
  • L. Nagy
  • A. Sápi
  • Á. Kukovecz
  • Z. Kónya
Article

Abstract

The effect of protonation on the surface acidic properties of titanate nanowires (TiONWs) was investigated. Nanowires were synthesized by the alkali hydrothermal method which resulted in one dimensional nanostructures of large external surface area and well-defined lamellar interlayer structure. The Na+/H+ ratio in the structure can be tuned by ion-exchange. Our aim was to characterize the morphology of the as-synthesized nanostructures by HRTEM and SEM measurements and assess their surface acidity using in situ infrared spectroscopic measurements and temperature programmed desorption. It was found that the numbers of Lewis and Brönsted acidic sites in the Na-form and the H-form of the TiONWs is different. The ratio and the nature of acidic sites can be tuned by the ion exchange process. The wire-like morphology and the tunable acidity are features of titanate nanowires that may render them a promising material in various heterogeneous catalytic applications.

Keywords

Titanate nanowires Surface acidity Pyridine adsorption Solid acids 

Notes

Acknowledgments

The financial support of the TÁMOP-4.2.2.A-11/1/KONV-2012-0047 and TÁMOP-4.2.2.A-11/1/KONV-2012-0060 projects and the EC FP7 INCO “NAPEP” network is acknowledged.

References

  1. Bezrodna, T., Puchkovska, G., Shimanovska, V., Chashechnikova, I., Khalyavka, T., Baran, J.: Pyridine–TiO2 surface interaction as a probe for surface active centers analysis. Appl. Surf. Sci. 214, 222–231 (2003)CrossRefGoogle Scholar
  2. Busca, G.: Spectroscopic characterization of the acid properties of metal oxide catalysts. Catal. Today 41, 191–206 (1998)CrossRefGoogle Scholar
  3. Byrne, M.T., McCarthy, J.E., Bent, M., Blake, R., Gunko, Y.K., Horvath, E., Konya, Z., Kukovecz, A., Kiricsi, I., Coleman, J.N.: Chemical functionalisation of titania nanotubes and their utilisation for the fabrication of reinforced polystyrene composites. J. Mater. Chem. 17, 2351–2358 (2007)CrossRefGoogle Scholar
  4. Cook, D.: Vibrational spectra of pyridinium salts. Can. J. Chem. 39, 2009–2024 (1961)CrossRefGoogle Scholar
  5. Darányi, M., Csesznok, T., Kukovecz, A., Konya, Z., Kiricsi, I., Ajayan, P.M., Vajtai, R.: Layer-by-layer assembly of TiO2 nanowire/carbon nanotube films and characterization of their photocatalytic activity. Nanotechnology 22, 195701 (2011)CrossRefGoogle Scholar
  6. Ertl, G., Knötzinger, H., Weitkamp, J.: Handbook of Heterogenous Catalysis. VCH Verlagsgesellschaf mbH, Weinheim (1997)CrossRefGoogle Scholar
  7. Gonzalez Pena, L.F., Sad, M.E., Padro, C.L., Apesteguia, C.R.: Study of the alkylation of phenol with methanol on Zn(H)-exchanged NaY zeolites. Catal. Lett. 141, 939–947 (2011)CrossRefGoogle Scholar
  8. Halász, J., Kónya, Z., Fudala, A., Béres, A., Kiricsi, I.: Indium and gallium containing ZSM-5 zeolites: acidity and catalytic activity in propane transformation. Catal. Today 31, 293–304 (1996)CrossRefGoogle Scholar
  9. Hodos, M., Horvath, E., Haspel, H., Kukovecz, A., Konya, Z., Kiricsi, I.: Photo sensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles. Chem. Phys. Lett. 399, 512–515 (2004)CrossRefGoogle Scholar
  10. Hodos, M., Kónya, Z., Kiricsi, I.: Catalysis by pre-prepared platinum nanoparticles supported on trititanate nanotubes. React. Kinet. Catal. Lett. 84, 341–350 (2005)CrossRefGoogle Scholar
  11. Horváth, E., Kukovecz, A., Konya, Z., Kiricsi, I.: Hydrothermal conversion of self-assembled titanate nanotubes into nanowires in a revolving autoclave. Chem. Mater. 19, 927–931 (2007)CrossRefGoogle Scholar
  12. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Nihara, K.: Formation of titanium oxide nanotubes. Langmuir 14, 3160–3163 (1998)CrossRefGoogle Scholar
  13. Kitano, M., Nakajima, K., Kondo, J.N., Hayashi, S., Hara, M.: Protonated titanate nanotubes as solid acid catalyst. J. Am. Chem. Soc. 132, 6622–6623 (2010)CrossRefGoogle Scholar
  14. Kónya, Z., Hannus, I., Kiricsi, I.: Infrared spectroscopic study of adsorption and reactions of methyl chloride on acidic, neutral and basic zeolites. Appl. Catal. B Environ. 8, 391–404 (1996)Google Scholar
  15. Kukovecz, A., Hodos, M., Horvath, E., Radnoczi, G., Konya, Z., Kiricsi, I.: Oriented crystal growth model explains the formation of titania nanotubes. J. Phys. Chem. B 109, 17781–17783 (2005)CrossRefGoogle Scholar
  16. Kukovecz, A., Potari, G., Oszko, A., Konya, Z., Erdohelyi, A., Kiss, J.: Probing the interaction of Au, Rh and bimetallic Au–Rh clusters with the TiO2 nanowire and nanotube support. Surf. Sci. 605, 1048–1055 (2011)CrossRefGoogle Scholar
  17. Li, J.R., Tang, Z.L., Zhang, Z.T.: Layered hydrogen titanate nanowires with novel lithium intercalation properties. Chem. Mater. 17, 5848–5855 (2005)CrossRefGoogle Scholar
  18. Ma, R., Bando, Y., Sasaki, T.: Directly rolling nanosheets into nanotubes. J. Phys. Chem. B 108, 2115–2119 (2004)CrossRefGoogle Scholar
  19. Martra, G.: Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behavior. Appl. Catal. A Gen. 200, 275–285 (2000)CrossRefGoogle Scholar
  20. Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A.: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191–195 (2005)CrossRefGoogle Scholar
  21. Ohsaki, Y., Masaki, N., Kitamura, T., Wada, Y., Okamoto, T., Sekino, T., Niihara, K., Yanagida, S.: Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. Phys. Chem. Chem. Phys. 7, 4157–4163 (2005)CrossRefGoogle Scholar
  22. Parry, E.P.: An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. J. Catal. 2, 371–379 (1963)CrossRefGoogle Scholar
  23. Peng, C.W., Richard-Plouet, M., Ke, T.Y., Lee, C.Y., Chiu, H.T., Marhic, C., Puzenat, E., Lemoigno, F., Brohan, L.: Chimie douce route to sodium hydroxo titanate nanowires with modulated structure and conversion to highly photoactive titanium dioxides. Chem. Mater. 20, 7228–7236 (2008)CrossRefGoogle Scholar
  24. Poudel, B., Wang, W., Dames, C., Huang, J., Kunwar, S., Wang, D., Barnerjee, D., Chen, G., Ren, Z.: Formation of crystallized titania nanotubes and their transformation into nanowires. Nanotechnology 16, 1935 (2005)CrossRefGoogle Scholar
  25. Sasaki, T., Ma, R., Nakano, S., Yamauchi, S., Watanabe, M.: Fabrication of titanium dioxide thin flakes and their porous aggregate. Chem. Mater. 9, 602–608 (1997)CrossRefGoogle Scholar
  26. Tsai, C., Teng, H.: Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem. Mater. 18, 367–373 (2006)CrossRefGoogle Scholar
  27. Toledo-Antonio, J.A., Cortes-Jacome, M.A., Navarrete, J., Angeles-Chavez, C., Lopez-Salinas, E., Rendon-Rivera, A.: Morphology induced CO, pyridine and lutidine adsorption sites on TiO2: Nanoparticles, nanotubes and nanofibers. Catal. Today 155, 247–254 (2010)CrossRefGoogle Scholar
  28. Toth, M., Kiss, J., Oszko, A., Potari, G., Laszlo, B., Erdohelyi, A.: Hydrogenation of carbon dioxide on Rh, Au and Au–Rh bimetallic clusters supported on titanate nanotubes, nanowires and TiO2. Top. Catal. 55, 747–756 (2012)CrossRefGoogle Scholar
  29. Wu, M.C., Hiltunen, J., Sapi, A., Avila, A., Larsson, W., Liao, H.C., Huuhtanen, M., Toth, G., Shchukarev, A., Laufer, N., Kukovecz, A., Konya, Z., Mikkola, J.P., Keiski, R., Su, W.F., Chen, Y.F., Jantunen, H., Ajayan, P.M., Vajtai, R., Kordas, K.: Nitrogen-doped anatase nanofibers decorated with noble metal nanoparticles for photocatalytic production of hydrogen. ACS Nano 5, 5025–5030 (2011)CrossRefGoogle Scholar
  30. Yang, D.J., Sarina, S., Zhu, H.Y., Liu, H.W., Zheng, Z.F., Xie, M.X., Smith, S.V., Komarneni, S.: Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes. Angew. Chem. Int. Ed. 50, 10594–10598 (2011)CrossRefGoogle Scholar
  31. Yang, D.J., Zheng, Z.F., Zhu, H.Y., Liu, H.W., Gao, X.P.: Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv. Mater. 20, 2777–2781 (2008)CrossRefGoogle Scholar
  32. Zhang, Y.Y., Fu, W.Y., Yang, H.B., Li, M.H., Li, Y.X., Zhao, W.Y., Sun, P., Yuan, M.X., Ma, D., Liu, B.B., Zou, G.T.: A novel humidity sensor based on Na2Ti3O7 nanowires with rapid response-recovery. Sens. Actuators B Chem. 135, 317–321 (2008)CrossRefGoogle Scholar
  33. Zhao, B., Chen, F., Liu, H., Zhang, J.: Mesoporous TiO2-B nanowires synthesized from tetrabutyl titanate. J. Phys. Chem. Solids 72, 201–206 (2011)CrossRefGoogle Scholar
  34. Zhu, G.N., Wang, Y.G., Xia, Y.Y.: Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 5, 6652–6667 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • D. Madarász
    • 1
  • I. Szenti
    • 1
  • L. Nagy
    • 1
  • A. Sápi
    • 1
  • Á. Kukovecz
    • 1
    • 2
  • Z. Kónya
    • 1
    • 3
  1. 1.Department of Applied and Environmental ChemistryUniversity of SzegedSzegedHungary
  2. 2.MTA-SZTE “Lendület” Porous Nanocomposites Research GroupSzegedHungary
  3. 3.MTA-SZTE Reaction Kinetics and Surface Chemistry Research GroupSzegedHungary

Personalised recommendations