, Volume 19, Issue 2–4, pp 687–694 | Cite as

Effect of planetary ball milling process parameters on the nitrogen adsorption properties of multiwall carbon nanotubes

  • Ibolya Zita Papp
  • Gábor Kozma
  • Róbert Puskás
  • Tímea Simon
  • Zoltán Kónya
  • Ákos Kukovecz


The dependence of multiwall carbon nanotube (MWCNT) length distribution and some nitrogen derived morphological descriptors on various planetary ball milling process parameters was investigated. Ball milling was found to cut nanotubes into smaller pieces, narrow their length distribution and increase their specific surface area and surface fractal dimension. Typical length reduction was from 1300 to 200 nm, specific surface area increase from 160 to 340 m2g−1 and surface fractal dimension increase from 2.47 to 2.70. The pore size distribution of pristine MWCNTs exhibited a mesoporous character dominated by intertube channels. A sharp maximum appeared at d = 3.6 nm diameter when the milling power was increased. This increase was attributed to the opening of intratube voids. Processes involving graphitic platelet detachment, tube wall amorphization or carbonaceous debris accumulation appear to play only minor roles under the studied experimental conditions of planetary milling. Control over the morphology of the milled material is best achieved by varying the diameter and the mass ratio of the grinding balls as well as the classical process parameters like disk rotational speed, milling time and number of balls.


Carbon nanotube Ball mill Nitrogen adsorption Fractal dimension 



The financial support of the OTKA 106234, TÁMOP-4.2.2.A-11/1/KONV-2012-0047 and TÁMOP-4.2.2.A-11/1/KONV-2012-0060 Projects and the EC FP7 INCO “NAPEP” network is acknowledged.


  1. Abdellaoui, M., Rahouadj, R., Gaffet, E.: Optimisation of the mechanical shock transfer in a modified horizontal rod mill. Mater. Sci. Forum 225, 255–260 (1996)Google Scholar
  2. Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951)CrossRefGoogle Scholar
  3. Chattopadhyay, P.P., Mannaa, I., Talapatra, S., Pabi, S.K.: A mathematical analysis of milling mechanics in a planetary ball mill. Mater. Chem. Phys. 68, 85–94 (2001)CrossRefGoogle Scholar
  4. Esawi, A.M.K., Morsi, K., Sayed, A., Gawad, A.A., Borah, P.: Fabrication and properties of dispersed carbon nanotube-aluminum composites. Mater. Sci. A 508, 167–173 (2009)CrossRefGoogle Scholar
  5. Gao, B., Bower, C., Lorentzen, J.D., Fleming, L., Kleinhammes, A., Tang, X.P., et al.: Enhanced saturation lithium composition in ballmilled single-walled carbon nanotubes. Chem. Phys. Lett. 327, 69–75 (2000)CrossRefGoogle Scholar
  6. Huang, H., Pan, J., McCormick, P.G.: Prediction of impact forces in a vibratory ball mill using an inverse technique. Int. J. Impact Eng 19, 117–126 (1997)CrossRefGoogle Scholar
  7. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  8. Kanyó, T., Kónya, Z., Kukovecz, A., Berger, F., Dékány, I., Kiricsi, I.: Quantitative characterization of hydrophilic-hydrophobic properties of MWNTs surfaces. Langmuir 20, 1656–1661 (2004)CrossRefGoogle Scholar
  9. Kavan, L., Dunsch, L., Kataura, H.: Electrochemical tuning of electronic structure of carbon nanotubes and fullerene peapods. Carbon 42, 1011–1019 (2004)CrossRefGoogle Scholar
  10. Kim, Y.A., Hayashi, T., Fukai, Y., Endo, M., Yanagisawa, T., Dresselhaus, M.S.: Effect of ball milling on morphology of cupstacked carbon nanotubes. Chem. Phys. Lett. 355, 279–284 (2002)CrossRefGoogle Scholar
  11. Kiss, E.E., Boskovic, G.C.: Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts. Process Appl Ceram 6, 173–182 (2012)CrossRefGoogle Scholar
  12. Kukovecz, A., Konya, Z.: Mechanichemistry of carbon nanotubes. In: Basiuk, V.A. (ed.) Chemistry of carbon nanotubes, pp. 237–254. American Scientific Publishers, Cambridge (2008)Google Scholar
  13. Kukovecz, A., Konya, Z., Naragaju, N., Willems, I., Tamasi, A., Fonseca, A., Nagy, J.B., Kiricsi, I.: Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol-gel silica-aluminas. Phys. Chem. Chem. Phys. 2, 3071–3076 (2000)CrossRefGoogle Scholar
  14. Kukovecz, A., Kanyó, T., Kónya, Z., Kiricsi, I.: Long-time low-impact ball milling of multiwall carbon nanotubes. Carbon 43, 994–1000 (2005)CrossRefGoogle Scholar
  15. Li, Y.B., Wei, B.Q., Liang, J., Yu, Q., Wu, D.H.: Transformation of carbon nanotubes to nanoparticles by ball milling process. Carbon 37, 493–497 (1999)CrossRefGoogle Scholar
  16. Liu, F., Zhang, X., Cheng, J., Tu, J., Kong, F., Huang, W., et al.: Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior. Carbon 41, 2527–2532 (2003)CrossRefGoogle Scholar
  17. Munoz, E., Ruiz-Gonzalez, M.L., Seral-Ascaso, A., Sanjuan, M.L., Gonzalez-Calbet, J.M., Laguna, M., de la Fuente, G.F.: Tailored production of nanostructured metal/carbon foam by laser ablation of selected organometallic precursors. Carbon 48, 1807–1814 (2010)CrossRefGoogle Scholar
  18. Nouni, N., Ziaei-Rad, S., Adibi, S., Karimzadeh, F.: Fabrication and mechanical property prediction of carbon nanotube reinforced Aluminum nanocomposites. Mater. Des. 34, 1–14 (2012)CrossRefGoogle Scholar
  19. Pfeifer, P., Wu, Y.J., Cole, M.W., Krim, J.: Multilayer adsorption on a fractally rough surface. Phys. Rev. Lett. 62, 1997–2000 (1989)CrossRefGoogle Scholar
  20. Pierard, N., Fonseca, A., Konya, Z., Willems, I., Van Tendeloo, G., B.Nagy, J.: Production of short carbon nanotubes with open tips by ball milling. Chem. Phys. Lett. 335, 1–8 (2001)CrossRefGoogle Scholar
  21. Rigby, S.P., Chigada, P.I., Perkins, E.L., Watt-Smith, M.J., Lowe, J.O., Edler, K.J.: Fundamental studies of gas sorption within mesopores situated amidst an inter-connected, irregular network. Adsorption 14, 289–307 (2008)CrossRefGoogle Scholar
  22. Tang, P., Chew, N.Y.K., Chan, H.K., Raper, J.A.: Limitations of determination of surface fractal dimension using N2 adsorption isotherms and modified Frenkel–Halsey–Hill theory. Langmuir 19, 2632–2638 (2003)CrossRefGoogle Scholar
  23. Wang, Y., Wu, J., Wei, F.: A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio. Carbon 41, 2939–2948 (2003)CrossRefGoogle Scholar
  24. Watanabe, R., Hashimoto, H., Lee, G.G.: Computer-simulation of milling ball motion in mechanical alloying. Mater. Trans. JIM 36, 102–109 (1995)Google Scholar
  25. Zubizarreta, L., Gomez, E.I., Arenillas, A., Ania, C.O., Parra, J.B., Pis, J.J.: H2 storage in carbon materials. Adsorption 14, 557–566 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ibolya Zita Papp
    • 1
  • Gábor Kozma
    • 1
  • Róbert Puskás
    • 1
  • Tímea Simon
    • 1
  • Zoltán Kónya
    • 1
    • 2
  • Ákos Kukovecz
    • 1
    • 3
  1. 1.Department of Applied and Environmental ChemistryUniversity of SzegedSzegedHungary
  2. 2.MTA-SZTE Reaction Kinetics and Surface Chemistry Research GroupSzegedHungary
  3. 3.MTA-SZTE “Lendület” Porous Nanocomposites Research GroupSzegedHungary

Personalised recommendations