, Volume 19, Issue 2–4, pp 589–600 | Cite as

Amino-functionalized pore-expanded SBA-15 for CO2 adsorption

  • A. Olea
  • E. S. Sanz-Pérez
  • A. Arencibia
  • R. Sanz
  • G. CallejaEmail author


The adsorption of CO2 on pore-expanded SBA-15 mesostructured silica functionalized with amino groups was studied. The synthesis of conventional SBA-15 was modified to obtain pore-expanded materials, with pore diameters from 11 to 15 nm. Post-synthesis functionalization treatments were carried out by grafting with diethylenetriamine (DT) and by impregnation with tetraethylenepentamine (TEPA) and polyethyleneimine (PEI). The adsorbents were characterized by X-ray diffraction, N2 adsorption–desorption at 77 K, elemental analysis and Transmission Electron Microscopy. CO2 capture was studied by using a volumetric adsorption technique at 45 °C. Consecutive adsorption–desorption experiments were also conducted to check the cyclic behaviour of adsorbents in CO2 capture. An improvement in CO2 adsorption capacity and efficiency of amino groups was found for pore-expanded SBA-15 impregnated materials in comparison with their counterparts prepared from conventional SBA-15 with smaller pore size. PEI and TEPA-based adsorbents reached significant CO2 uptakes at 45 °C and 1 bar (138 and 164 mg CO2/g, respectively), with high amine efficiencies (0.33 and 0.37 mol CO2/mol N), due to the positive effect of the larger pore diameter in the diffusion and accessibility of organic groups. Pore-expanded SBA-15 samples grafted with DT and impregnated with PEI showed a good stability after several adsorption–desorption cycles of pure CO2. PEI-impregnated adsorbent was tested in a fixed bed reactor with a diluted gas mixture containing 15 % CO2, 5 % O2, 80 % Ar and water (45 °C, 1 bar). A noteworthy adsorption capacity of 171 mg CO2/g was obtained in these conditions, which simulate flue gas after the desulphurization step in a thermal power plant.


Pore-expanded SBA-15 Amino-functionalization Diethylenetriamine Polyethyleneimine Tetraethylenepentamine CO2 capture 


  1. Aziz, B., Hedin, N., Bacsik, Z.: Quantification of chemisorption and physisorption of carbon dioxide on porous silica modified by propylamines: effect of amine density. Micro. Microporous Mater. 159, 42–49 (2012)CrossRefGoogle Scholar
  2. Barrer, R.M.: Zeolites and Clay Minerals as Sorbents and Molecular Sieves. Academic Press, London (1978)Google Scholar
  3. Buckingham, A.D., Disch, R.L.: The quadrupole moment of the carbon dioxide molecule. Proc. R. Soc. London, Ser. A, 273, 275–289 (1963).Google Scholar
  4. Burkett, S.L., Sims, S.D., Mann, S.: Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chem. Commun. 11, 1367–1368 (1996)CrossRefGoogle Scholar
  5. Calleja, G., Sanz, R., Arencibia, A., Sanz-Pérez, E.S.: Influence of drying conditions on amine-functionalized SBA-15 as adsorbent of CO2. Top. Catal. 54, 135–145 (2011)CrossRefGoogle Scholar
  6. Cao, L., Man, T., Kruk, M.: Synthesis of ultra-large-pore SBA-15 silica with two-dimensional hexagonal structure using triisopropylbenzene as micelle expander. Chem. Mater. 21, 1144–1153 (2009)CrossRefGoogle Scholar
  7. Caplow, M.: Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc. 24, 6795–6803 (1968)CrossRefGoogle Scholar
  8. Chen, C., Yang, S.T., Ahn, W.S., Ryoo, R.: Amine-impregnated silica monolith with hierarchical pore structure: enhancement of CO2 capture capacity. Chem. Commun. 24, 3627–3629 (2009)CrossRefGoogle Scholar
  9. Chen, C., Son, W.J., You, K.S., Ahn, J.W., Ahn, W.S.: Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity. Chem. Eng. J. 161, 46–52 (2010)CrossRefGoogle Scholar
  10. Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. Chem. Sus. Chem. 2, 796–854 (2009)CrossRefGoogle Scholar
  11. Fan, J., Yu, C., Lei, J., Zhang, Q., Li, T., Tu, B., Zhou, W., Zhao, D.: Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores. J. Am. Chem. Soc. 127, 10794–10795 (2005)CrossRefGoogle Scholar
  12. Franchi, R.S., Harlick, P.J.E., Sayari, A.: Application of pore-expanded mesoporous silica. 2. Development of a high-capacity, water tolerant adsorbent for CO2. Ind. Eng. Chem. Res. 44, 8007–8013 (2005)CrossRefGoogle Scholar
  13. Gaikwad, R., Boward, W.L., DePriest W.: Wet flue gas desulfurization technology evaluation. Project Number 11311-000. Sargent & Lundy, National Lime Association (2003).Google Scholar
  14. Harlick, P.J.E., Sayari, A.: Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance. Ind. Eng. Chem. Res. 46, 446–458 (2007)CrossRefGoogle Scholar
  15. Haynes, J.M.: Colloid Science, vol. 2. Chemical Society, London (1975)CrossRefGoogle Scholar
  16. Heydari-Gorji, A., Belmabkhout, Y., Sayari, A.: Polyethylenimine-impregnated mesoporous silica: effect of amine loading and surface alkyl chains on CO2 adsorption. Langmuir 27, 12411–12416 (2011)CrossRefGoogle Scholar
  17. Knowles, G.P., Delaney, S.W., Chaffee, A.L.: Diethylenetriamine[propyl(silyl)]-functionalized (DT) mesoporous silicas as CO2 adsorbents. Ind. Eng. Chem. Res. 45, 2626–2633 (2006)CrossRefGoogle Scholar
  18. Leal, O., Bolívar, C., Ovalles, C., García, J.J., Espidel, Y.: Reversible adsorption of carbon dioxide on amine surface-bonded silica gel. Inorg. Chim. Acta 240, 183–189 (1995)CrossRefGoogle Scholar
  19. Lettow, J.S., Han, Y.J., Schmidt-Winkel, P., Yang, P., Zhao, D., Stucky, G.D., Ying, J.Y.: Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas. Langmuir 16, 8291–8295 (2000)CrossRefGoogle Scholar
  20. Lim, M.H., Stein, A.: Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials. Chem. Mater. 11, 3285–3295 (1999)CrossRefGoogle Scholar
  21. Macquarrie, D.J.: Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl–MCM. Chem. Commun. 16, 1961–1962 (1996)CrossRefGoogle Scholar
  22. Metz, B., Davidson, O., de Coninck, H., Loos, M., Meyer, L. (eds.): IPCC special report on carbon dioxide capture and storage. Cambridge Univ. Press, Cambridge, New York (2005)Google Scholar
  23. Nagarajan, R.: Solubilization of hydrocarbons and resulting aggregate shape transitions in aqueous solutions of Pluronic® (PEO-PPO-PEO) block copolymers. Colloids Surf. 16, 55–72 (1999)CrossRefGoogle Scholar
  24. Nagarajan, R., Barry, M., Ruckenstein, E.: Unusual selectivity in solubilization by block copolymer micelles. Langmuir 2, 210–215 (1986)CrossRefGoogle Scholar
  25. Namba, S., Mochizuki, A.: Efect of auxiliary chemicals on preparation of silica MCM-41. Res. Chem. Intermed. 24(5), 561–570 (1998)CrossRefGoogle Scholar
  26. Samanta, A., Zhao, A., Shimizu, G.K.H., Sarkar, P., Guota, R.: Post-combustion CO2 capture using solid sorbents: a review. Ind. Eng. Chem. Res. 51(4), 1438–1463 (2012)CrossRefGoogle Scholar
  27. Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E.S.: CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15. Appl. Surf. Sci. 256, 5323–5328 (2010)CrossRefGoogle Scholar
  28. Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E.S.: Amino functionalized mesostructured SBA-15 silica for CO2 capture: exploring the relation between the adsorption capacity and the distribution of amino groups by TEM. Micropor. Mesopor. Mater. 158, 309–317 (2012)CrossRefGoogle Scholar
  29. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 57, 603–620 (1985)CrossRefGoogle Scholar
  30. Son, W.J., Choi, J.S., Ahn, W.S.: Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microp. Mesop. Mater. 113, 31–40 (2008)CrossRefGoogle Scholar
  31. Stein, A., Melde, B.J., Schroden, R.C.: Hybrid inorganic-organic mesoporous silicates-nanoscopic reactors coming of age. Adv. Mater. 12, 1403–1419 (2000)CrossRefGoogle Scholar
  32. Sun, J., Zhang, H., Ma, D., Chen, Y., Bao, X., Klein-Hoffmann, A., Pfänder, N., Su, D.S.: Alkanes-assisted low temperature formation of highly ordered SBA-15 with large cylindrical mesopores. Chem. Commun. 42, 5343–5345 (2005)CrossRefGoogle Scholar
  33. Tontiwachwuthikul, P., Meisen, A., Lim, C.J.: Solubility of carbon dioxide in 2-amino-2-methyl-1-propanol solutions. J. Chem. Eng. Data 36, 130–133 (1991)CrossRefGoogle Scholar
  34. US Department of Energy (DOE).: Office of Science and Office of Fossil Energy: Carbon sequestration. State of science. DOE/OS-FE, Washington, DC (1999)Google Scholar
  35. van der Voort, P., Gills-D’Hamers, L., Vrancken, K.C., Vansant, E.F.: Effect of porosity on the distribution and reactivity of hydroxyl groups on the surface of silica gel. Faraday Trans. 87(24), 3899–3905 (1991)CrossRefGoogle Scholar
  36. Xu, X., Song, C., Andrésen, J.M., Miller, B.G., Scaroni, A.W.: Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 16, 1463–1469 (2002)CrossRefGoogle Scholar
  37. Yue, M.B., Chun, Y., Cao, Y., Dong, X., Zhu, J.H.: CO2 capture by as-prepared SBA-15 with an occluded organic template. Adv. Funct. Mater. 16, 1717–1722 (2006)CrossRefGoogle Scholar
  38. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrikson, G.H., Chmelka, B.F., Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998a).Google Scholar
  39. Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., Stucky, G.D.: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998b).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. Olea
    • 1
  • E. S. Sanz-Pérez
    • 1
  • A. Arencibia
    • 2
  • R. Sanz
    • 2
  • G. Calleja
    • 2
    Email author
  1. 1.Department of Chemical and Environmental TechnologyESCET. Universidad Rey Juan CarlosMóstoles, MadridSpain
  2. 2.Department of Chemical and Energy TechnologyESCET. Universidad Rey Juan CarlosMóstoles, MadridSpain

Personalised recommendations