Advertisement

Adsorption

, Volume 19, Issue 2–4, pp 501–508 | Cite as

Effects of carbon nanotube functionalization on the agglomeration and sintering of supported Pd nanoparticles

  • Róbert Puskás
  • Ákos Kukovecz
  • Zoltán Kónya
Article

Abstract

The size of carbon nanotube supported Pd and PdO nanoparticles was investigated on oxidatively functionalized multiwall carbon nanotubes. All samples were characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy and Raman spectroscopy. The average particle diameter calculated from TEM image analysis was found to be inversely proportional with the duration of the oxidation in nitric acid. Crystallite sizes determined from XRD patterns confirmed this general tendency.

Keywords

Carbon nanotube Functionalization Palladium nanoparticle Size dependence 

Notes

Acknowledgments

The financial support of the TÁMOP-4.2.2.A-11/1/KONV-2012-0047 and TÁMOP-4.2.2.A-11/1/KONV-2012-0060 projects is acknowledged. The authors thank Gábor Pótári and Albert Oszkó for the XPS measurements.

References

  1. Antisari, M.V., Marazzi, R., Krsmanovic, R.: Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments. Carbon 41, 2393–2401 (2003)CrossRefGoogle Scholar
  2. Antolini, E.: Graphene as a new carbon support for low-temperature fuel cell catalysts. Appl. Catal. 123–124, 52–68 (2012)CrossRefGoogle Scholar
  3. Bayram, E., Zahmakıran, M., Özkar, S., Finke, R.G.: In situ formed “weakly ligated/labile ligand” iridium(0) nanoparticles and aggregates as catalysts for the complete hydrogenation of neat benzene at room temperature and mild pressures. Langmuir 26, 12455–12464 (2010)CrossRefGoogle Scholar
  4. Che, M., Bennett, C.O.: The influence of particle size on the catalytic properties of supported metals. Adv. Catal. 36, 55–172 (1989)CrossRefGoogle Scholar
  5. Corrias, M., Caussat, B., Ayral, A., Durand, J., Kihn, Y., Kalck, Ph, Serp, Ph: Carbon nanotubes produced by fluidized bed catalytic CVD: first approach of the process. Chem. Eng. Sci. 58, 4475–4482 (2003)CrossRefGoogle Scholar
  6. Dalai, A.K., Davis, B.H.: Fischer–Tropsch synthesis: a review of water effects on the performances of unsupported and supported Co catalysts. Appl. Catal. 348, 1–15 (2008)CrossRefGoogle Scholar
  7. Dikonimos Makrisa, Th, Giorgi, R., Lisi, N., Pilloni, L., Salernitano, E., Sarto, F., Alvisi, M.: Carbon nanotubes growth by HFCVD: effect of the process parameters and catalyst preparation. Diam. Relat. Mater. 13, 305–310 (2004)CrossRefGoogle Scholar
  8. Gallagher, P.K., Gross, M.E.: The thermal decomposition of palladium acetate. J. Therm. Anal. 31, 1231–1241 (1986)CrossRefGoogle Scholar
  9. Gates, B.C.: Supported metal clusters: synthesis, structure, and catalysis. Chem. Rev. 95, 511–522 (1995)CrossRefGoogle Scholar
  10. Georgakilas, V., Gournis, D., Tzitzios, V., Pasquato, L., Guldi, D.M., Prato, M.: Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem. 17, 2679–2694 (2007)CrossRefGoogle Scholar
  11. Geus, J.W., van Dillen, A.J.: In: Ertl, G., Knözinger, H., Weitkamp, J. (eds.) Preparation of Solid Catalysts, vol. 6, pp. 460–487. Wiley, Weinheim (1999)CrossRefGoogle Scholar
  12. Halonen, N., Rautio, A., Leino, A.R., Kyllonen, T., Toth, G., Lappalainen, J., Kordas, K., Huhhtanen, M., Keiski, R.L., Sapi, A., Szabo, M., Kukovecz, A., Konya, Z., Kiricsi, I., Ayajan, P.M., Vajtai, R.: Three-dimensional carbon nanotube scaffolds as particulate filters and catalyst support membranes. ACS Nano 4, 2003–2008 (2010)CrossRefGoogle Scholar
  13. Height, M.J., Howard, J.B., Tester, J.W., Sande Vander, J.B.: Flame synthesis of single-walled carbon nanotubes. Carbon 42, 2295–2307 (2004)CrossRefGoogle Scholar
  14. Hernadi, K., Konya, Z., Siska, A., Kiss, J., Oszkó, A., Nagy, J.B., Kiricsi, I.: On the role of catalyst, catalyst support and their interaction in synthesis of carbon nanotubes by CCVD. Mater. Chem. Phys. 77, 536–541 (2003)CrossRefGoogle Scholar
  15. Horvath, E., Puskas, R., Remias, R., Mohl, M., Kukovecz, A., Konya, Z., Kiricsi, I.: A novel catalyst type containing noble metal nanoparticles supported on mesoporous carbon: synthesis. Charact. Catal. Prop. Top. Catal. 52, 1242–1250 (2009)CrossRefGoogle Scholar
  16. Komiyama, M.: Design and preparation of impregnated catalysts. Catal. Rev. Sci. Eng. 27, 341–372 (1985)CrossRefGoogle Scholar
  17. Konya, Z., Vesselenyi, I., Niesz, K., Kukovecz, A., Demortier, A., Fonseca, A., Delhalle, J., Mekhalif, Z., Nagy, B.J., Koos, A.A., Osvath, Z., Kocsonya, A., Biro, L.P., Kiricsi, I.: Large scale production of short functionalized carbon nanotubes. Chem. Phys. Lett. 360, 429–435 (2002)CrossRefGoogle Scholar
  18. Kukovecz, A., Konya, Z., Nagaraju, N., Willems, I., Tamasi, A., Fonseca, A., Nagy, J.B., Kiricsi, I.: Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol–gel silica–aluminas. Phys. Chem. Chem. Phys. 2, 3071–3076 (2000)CrossRefGoogle Scholar
  19. Lebedkin, S., Schweiss, P., Renker, B., Malik, S., Hennrich, F., Neumaier, M., Stoermer, C., Kappes, M.: Single-wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization. Carbon 40, 417–423 (2002)CrossRefGoogle Scholar
  20. Li, C., Shao, Z., Pang, M., Williams, C.T., Liang, C.: Carbon nanotubes supported Pt catalysts for phenylacetylene hydrogenation: effects of oxygen containing surface groups on Pt dispersion and catalytic performance. Catal. Today 186, 69–75 (2012)CrossRefGoogle Scholar
  21. Liu, H.P., Cheng, G., Zheng, R.T., Zhao, Y., Liang, C.L.: Influence of acid treatments of carbon nanotube precursors on Ni/CNT in the synthesis of carbon nanotubes. J. Mol. Catal. 230, 17–22 (2005)CrossRefGoogle Scholar
  22. Park, D., Kim, J.H., Lee, J.K.: Synthesis of carbon nanotubes on metallic substrates by a sequential combination of PECVD and thermal CVD. Carbon 41, 1025–1029 (2003)CrossRefGoogle Scholar
  23. Puskas, R., Sapi, A., Kukovecz, A., Konya, Z.: Comparison of nanoscaled palladium catalysts supported on various carbon allotropes. Top. Catal. 55, 865–872 (2012)CrossRefGoogle Scholar
  24. Sachtler, W.M.H.: In: Ertl, G., Knözinger, H., Weitkamp, J. (eds.) Handbook of Heterogeneous Catalysis, vol. 1, pp. 365–374. Wiley, Weinheim (1997)CrossRefGoogle Scholar
  25. Sapi, A., Remias, R., Konya, Z., Kukovecz, A., Kordas, K., Kiricsi, I.: Synthesis and characterization of nickel catalysts supported on different carbon materials. React. Kin. Catal. Lett. 96, 379–389 (2009)CrossRefGoogle Scholar
  26. Seelam, P.K., Huuhtanen, M., Sapi, A., Szabo, M., Kordas, K., Turpeinen, E., Toth, G., Keiski, R.L.: CNT-based catalysts for H2 production by ethanol reforming. Int. J. Hydrogen Energy 35, 12588–12595 (2010)CrossRefGoogle Scholar
  27. Serp, P., Corrias, M., Kalck, P.: Carbon nanotubes and nanofibers in catalysis. Appl. Catal. 253, 337–358 (2003)CrossRefGoogle Scholar
  28. Silva, W.M., Ribeiro, H., Seara, L.M., Calado, H.D.R., Ferlauto, A.S., Paniago, R.M., Leite, C.F., Silva, G.G.: Surface properties of oxidized and aminated multi-walled carbon nanotubes. J. Braz. Chem. Soc. 23, 1078 (2012)CrossRefGoogle Scholar
  29. Tang, S.H., Sun, G.Q., Sun, S.G., Qi, J., Xin, Q., Haarberg, G.M.: Double-walled carbon nanotubes as catalyst support in direct methanol fuel cells. J. Electrochem. Soc. 157, B1321–B1325 (2010)CrossRefGoogle Scholar
  30. Vermisoglou, E.C., Romanos, G.E., Karanikolos, G.N., Kanellopoulos, N.K.: Catalytic NOx removal by single-wall carbon nanotube-supported Rh nanoparticles. J. Hazard Mater. 194, 144–155 (2011)CrossRefGoogle Scholar
  31. Wu, H.M., Wexler, D., Wang, G.X., Liu, H.K.: Pt/C catalysts using different carbon supports for the cathode of PEM fuel cells. Adv. Sci. Lett. 4, 115–120 (2011)CrossRefGoogle Scholar
  32. Wu, J., Xue, Y., Yan, X., Yan, W.S., Cheng, Q.M., Xie, Y.: Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res. 5, 521–530 (2012)CrossRefGoogle Scholar
  33. Xiong, H.F., Motchelaho, M.A.M., Moyo, M., Jewell, L.L., Coville, N.J.: Correlating the preparation and performance of cobalt catalysts supported on carbon nanotubes and carbon spheres in the Fischer-Tropsch synthesis. J. Catal. 278, 26–40 (2011)CrossRefGoogle Scholar
  34. Yabe, Y., Ohtake, Y., Ishitobi, T., Show, Y., Izumi, T., Yamauchi, H.: Synthesis of well-aligned carbon nanotubes by radio frequency plasma enhanced CVD method. Diam. Relat. Mater. 13, 1292–1295 (2004)CrossRefGoogle Scholar
  35. Zhang, Y.: Synthesis of few-walled carbon nanotube–Rh nanoparticles by arc discharge: effect of selective oxidation. Mater. Charact. 68, 102–109 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Róbert Puskás
    • 1
  • Ákos Kukovecz
    • 1
    • 2
  • Zoltán Kónya
    • 1
    • 3
  1. 1.Department of Applied and Environmental ChemistryUniversity of SzegedSzegedHungary
  2. 2.MTA-SZTE “Lendület” Porous Nanocomposites Research GroupSzegedHungary
  3. 3.MTA-SZTE Reaction Kinetics and Surface Chemistry Research GroupSzegedHungary

Personalised recommendations