, Volume 18, Issue 5–6, pp 431–437 | Cite as

Tetraethylenepentamine-modified mesoporous adsorbents for CO2 capture: effects of preparation methods



Tetraethylenepentamine (TEPA)-modified mesocellular silica foams (MSFs) were fabricated via physical impregnation (MSF-T-x) and chemical grafting (MSF-CT-y) methods. The CO2 adsorption on these TEPA-modified MSFs was measured by using microbalances at 348 K and their adsorption capacities were observed to be 26.4–193.6 mg CO2/g-sorbent under ambient pressure using dry 15 % CO2. It was found that the CO2 adsorption capacities of MSF-CT-y were smaller than those of MSF-T-x sorbents which may be attributed to their higher density of amine groups. On the contrary, MSF-CT-y exhibited enhanced stability during repeated adsorption-desorption cycles compared to MSF-T-x sorbents. This notable enhancement in the durability of CO2 adsorption-desorption process was probably attributed to the decreased leaching of TEPA which is chemically bonded to the surface of MSF.


Tetraethylenepentamine Surface modification Mesoporous silica CO2 capture Durability 



The financial support of the Taiwan National Science Council (NSC 99-2221-E-151-023-MY2) is gratefully acknowledged.


  1. Akhtar, F., Liu, Q.L., Hedin, N., Bergstrom, L.: Strong and binder free structured zeolite sorbents with very high CO2-over-N2 selectivities and high capacities to adsorb CO2 rapidly. Energy Environ. Sci. 5, 7664–7673 (2012) CrossRefGoogle Scholar
  2. Bai, S.Y., Liu, J., Gao, J.S., Yang, Q.H., Li, C.: Hydrolysis controlled synthesis of amine-functionalized hollow ethane-silica nanospheres as adsorbents for CO2 capture. Microporous Mesoporous Mater. 151, 474–480 (2012) CrossRefGoogle Scholar
  3. Belmabkhout, Y., Sayari, A.: Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions. Adsorption 15, 318–328 (2009) CrossRefGoogle Scholar
  4. Bhagiyalakshmi, M., Park, S.D., Cha, W.S., Jang, H.T.: Development of TREN dendrimers over mesoporous SBA-15 for CO2 adsorption. Appl. Surf. Sci. 256, 6660–6666 (2010) CrossRefGoogle Scholar
  5. Chang, F.Y., Chao, K.J., Cheng, H.H., Tan, C.S.: Adsorption of CO2 onto amine-grafted mesoporous silicas. Sep. Purif. Technol. 70, 87–95 (2009) CrossRefGoogle Scholar
  6. Chen, C., Yang, S.T., Ahn, W.S., Ryoo, R.: Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. Chem. Commun. 3627–3629 (2009) Google Scholar
  7. Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2, 796–854 (2009) CrossRefGoogle Scholar
  8. D’Alessandro, D.M., Smit, B., Long, J.R.: Carbon dioxide capture: prospects for new materials. Angew. Chem., Int. Ed. 49, 6058–6082 (2010) CrossRefGoogle Scholar
  9. Figueroa, D., Fout, T., Plasynski, S., Mcllvried, H., Srivastava, R.D.: Advances in CO2 capture technology-the US department of energy’s carbon sequestration program. Int. J. Greenh. Gas Control 2, 9–20 (2008) CrossRefGoogle Scholar
  10. Fulvio, P.F., Lee, J.S., Mayes, R.T., Wang, X.Q., Mahurin, S.M., Dai, S.: Boron and nitrogen-rich carbons from ionic liquid precursors with tailorable surface properties. Phys. Chem. Chem. Phys. 13, 13486–13491 (2011) CrossRefGoogle Scholar
  11. Goeppert, A., Meth, S., Prakash, G.K.S., Olah, G.A.: Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energy Environ. Sci. 3, 1949–1960 (2010) CrossRefGoogle Scholar
  12. Hao, G.P., Li, W.C., Qian, D., Lu, A.H.: Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv. Mater. 22, 853–857 (2010) CrossRefGoogle Scholar
  13. Harlick, P.J.E., Sayari, A.: Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance. Ind. Eng. Chem. Res. 46, 446–458 (2007) CrossRefGoogle Scholar
  14. Hicks, J.C., Drese, J.H., Fauth, D.J., Gray, M.L., Qi, G., Jones, C.W.: Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. J. Am. Chem. Soc. 130, 2902–2903 (2008) CrossRefGoogle Scholar
  15. Hiyoshi, N., Yogo, K., Yashima, T.: Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous Mesoporous Mater. 84, 357–365 (2005) CrossRefGoogle Scholar
  16. Ichikawa, S., Seki, T., Tada, M., Iwasawa, Y., Ikariya, T.: Amorphous nano-structured silicas for high-performance carbon dioxide confinement. J. Mater. Chem. 20, 3163–3165 (2010) CrossRefGoogle Scholar
  17. Ko, Y.G., Shin, S.S., Choi, U.S.: Primary, secondary, and tertiary amines for CO2 capture: designing for mesoporous CO2 adsorbents. J. Colloid Interface Sci. 361, 594–602 (2011) CrossRefGoogle Scholar
  18. Krishna, R., van Baten, J.M.: A comparison of the CO2 capture characteristics of zeolites and metal-organic frameworks. Sep. Purif. Technol. 87, 120–126 (2012) CrossRefGoogle Scholar
  19. Lee, J., Sohn, K., Hyeon, T.: Fabrication of novel mesocellular carbon foams with uniform ultralarge mesopores. J. Am. Chem. Soc. 123, 5146–5147 (2001) CrossRefGoogle Scholar
  20. Lee, D.K., Jin, Y.S., Jung, N.C., Lee, J.H., Lee, J.W., Jeong, Y.S., Jeon, S.: Gravimetric analysis of the adsorption and desorption of CO2 on amine-functionalized mesoporous silica mounted on a microcantilever array. Environ. Sci. Technol. 45, 5704–5709 (2011) CrossRefGoogle Scholar
  21. Liang, Z.J., Fadhel, B., Schneider, C.J., Chaffee, A.L.: Adsorption of CO2 on mesocellular siliceous foam iteratively functionalized with dendrimers. Adsorption 15, 429–437 (2009) CrossRefGoogle Scholar
  22. Liu, S.H., Chen, S.C.: Stepwise synthesis, characterization and electrochemical properties of ordered mesoporous carbons containing well-dispersed Pt nanoparticles using a functionalized template route. J. Solid State Chem. 184, 2420–2427 (2011) CrossRefGoogle Scholar
  23. Liu, Y., Shi, J.J., Chen, J., Ye, Q., Pan, H., Shao, Z.H., Shi, Y.: Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6. Microporous Mesoporous Mater. 134, 16–21 (2010) CrossRefGoogle Scholar
  24. Liu, S.H., Lin, Y.C., Chien, Y.C., Hyu, H.R.: Adsorption of CO2 from flue gas streams by a highly efficient and stable aminosilica adsorbent. J. Air Waste Manage. Assoc. 61, 226–233 (2011a) CrossRefGoogle Scholar
  25. Liu, S.H., Zheng, F.S., Wu, J.R.: Preparation of ordered mesoporous carbons containing well-dispersed and highly-alloying Pt–Co bimetallic nanoparticles toward methanol-resistant oxygen reduction reaction. Appl. Catal. B, Environ. 108–109, 81–89 (2011b) Google Scholar
  26. Liu, J., Thallapally, P.K., McGrail, B.P., Brown, D.R., Liu, J.: Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem. Soc. Rev. 41, 2308–2322 (2012) CrossRefGoogle Scholar
  27. MacDowell, N., Florin, N., Buchard, A., Hallett, J., Galindo, A., Jackson, G., Adjiman, C.S., Williams, C.K., Shah, N., Fennell, P.: An overview of CO2 capture technologies. Energy Environ. Sci. 3, 1645–1669 (2010) CrossRefGoogle Scholar
  28. Navarro, J.A.R., Barea, E., Salas, J.M., Masciocchi, N., Galli, S., Sironi, A., Ania, C.O., Parra, J.B.: H2, N2, CO, and CO2 sorption properties of a series of robust sodalite-type microporous coordination polymers. Inorg. Chem. 45, 2397–2399 (2006) CrossRefGoogle Scholar
  29. Pulido, A., Nachtigall, P., Zukal, A., Domínguez, I., Čejka, J.: Adsorption of CO2 on sodium-exchanged ferrierites: the bridged CO2 complexes formed between two extraframework cations. J. Phys. Chem. C 113, 2928–2935 (2009) CrossRefGoogle Scholar
  30. Qi, G.G., Wang, Y.B., Estevez, L., Duan, X.N., Anako, N., Park, A.H.A., Li, W., Jones, C.W., Giannelis, E.P.: High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy Environ. Sci. 4, 444–452 (2011) CrossRefGoogle Scholar
  31. Sayari, A., Belmabkhout, Y.: Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. J. Am. Chem. Soc. 132, 6312–6314 (2010) CrossRefGoogle Scholar
  32. Sayari, A., Belmabkhout, Y., Serna-Guerrero, R.: Flue gas treatment via CO2 adsorption. Chem. Eng. J. 171, 760–774 (2011) CrossRefGoogle Scholar
  33. Sayari, A., Belmabkhout, Y., Da’na, E.: CO2 deactivation of supported amines: does the nature of amine matter? Langmuir 28, 4241–4247 (2012) CrossRefGoogle Scholar
  34. Serna-Guerrero, R., Da’na, E., Sayari, A.: New insights into the interactions of CO2 with amine-functionalized silica. Ind. Eng. Chem. Res. 47, 9406–9412 (2008) CrossRefGoogle Scholar
  35. Serna-Guerrero, R., Belmabkhout, Y., Sayari, A.: Triamine-grafted pore-expanded mesoporous silica for CO2 capture: effect of moisture and adsorbent regeneration strategies. Adsorption 16, 567–575 (2010) CrossRefGoogle Scholar
  36. Serre, C., Bourrelly, S., Vimont, A., Ramsahye, N.A., Maurin, G., Llewellyn, P.L., Daturi, M., Filinchuk, Y., Leynaud, O., Barnes, P., Férey, G.: An explanation for the very large breathing effect of a metal-organic framework during CO2 adsorption. Adv. Mater. 19, 2246–2251 (2007) CrossRefGoogle Scholar
  37. Sevilla, M., Valle-Vigón, P., Fuertes, A.B.: N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 21, 2781–2787 (2011) CrossRefGoogle Scholar
  38. Sharma, P., Seong, J.K., Jung, Y.H., Choi, S.H., Park, S.D., Yoon, Y.I., Baek, I.H.: Amine modified and pelletized mesoporous materials: synthesis, textural-mechanical characterization and application in adsorptive separation of carbondioxide. Powder Technol. 219, 86–98 (2012) CrossRefGoogle Scholar
  39. Tang, Y., Landskron, K.: CO2-sorption properties of organosilicas with bridging amine functionalities inside the framework. J. Phys. Chem. C 114, 2494–2498 (2010) CrossRefGoogle Scholar
  40. Wang, J.T., Long, D.H., Zhou, H.H., Chen, Q.J., Liu, X.J., Ling, L.C.: Surfactant promoted solid amine sorbents for CO2 capture. Energy Environ. Sci. 5, 5742–5749 (2012) CrossRefGoogle Scholar
  41. Wen, J.J., Gu, F.N., Wei, F., Zhou, Y., Lin, W.G., Yang, J., Yang, J.Y., Wang, Y., Zou, Z.G., Zhu, J.H.: One-pot synthesis of the amine-modified meso-structured monolith CO2 adsorbent. J. Mater. Chem. 20, 2840–2846 (2010) CrossRefGoogle Scholar
  42. Xu, X., Song, C.S., Andresen, J.M., Miller, B.G., Scaroni, A.W.: Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 16, 1463–1469 (2002) CrossRefGoogle Scholar
  43. Xu, X., Song, C.S., Miller, B.G., Scaroni, A.W.: Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent. Fuel Process. Technol. 86, 1457–1472 (2005) CrossRefGoogle Scholar
  44. Yan, X.L., Zhang, L., Zhang, Y., Qiao, K., Yan, Z.F., Komarneni, S.: Amine-modified mesocellular silica foams for CO2 capture. Chem. Eng. J. 168, 918–924 (2011) CrossRefGoogle Scholar
  45. Yan, W., Tang, J., Bian, Z.J., Hu, J., Liu, H.L.: Carbon dioxide capture by amine-impregnated mesocellular-foam-containing template. Ind. Eng. Chem. Res. 51, 3653–3662 (2012) CrossRefGoogle Scholar
  46. Yue, M.B., Chun, Y., Cao, Y., Dong, X., Zhu, J.H.: CO2 capture by as-prepared SBA-15 with an occluded organic template. Adv. Funct. Mater. 16, 1717–1722 (2006) CrossRefGoogle Scholar
  47. Yue, M.B., Sun, L.B., Cao, Y., Wang, Y., Wang, Z.J., Zhu, J.H.: Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine. Chem. Eur. J. 14, 3442–3451 (2008) CrossRefGoogle Scholar
  48. Zeleňák, V., Badaničová, M., Halamová, D., Čejka, J., Zukal, A., Murafa, N., Goerigk, G.: Amine-modified ordered mesoporous silica: effect of pore size on carbon dioxide capture. Chem. Eng. J. 144, 336–342 (2008) CrossRefGoogle Scholar
  49. Zhao, Y., Shen, Y.M., Bai, L., Hao, R.J., Dong, L.Y.: Synthesis and CO2 adsorption properties of molecularly imprinted adsorbents. Environ. Sci. Technol. 46, 1789–1795 (2012) CrossRefGoogle Scholar
  50. Zhou, H., Wang, Y.M., Zhang, W.Z., Qu, J.P., Lu, X.B.: N-Heterocyclic carbene functionalized MCM-41 as an efficient catalyst for chemical fixation of carbon dioxide. Green Chem. 13, 644–650 (2011) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringNational Kaohsiung University of Applied SciencesKaohsiungTaiwan

Personalised recommendations