, Volume 19, Issue 1, pp 39–47 | Cite as

High-temperature hydrothermal synthesis of magnetically active, ordered mesoporous resin and carbon monoliths with reusable adsorption for organic dye

  • Fujian Liu
  • Hao Zhang
  • Longfeng Zhu
  • Yanmei Liao
  • Faisal Nawaz
  • Xiangju Meng
  • Feng-Shou XiaoEmail author


Magnetically active, thermally stable, and ordered mesoporous resin (MOMR-200) and carbon (MOMC-200) monoliths were prepared by one-pot hydrothermal synthesis from resol, copolymer surfactant, and iron cations at high-temperature (200 C), followed by calcination at 360 C and carbonization at 600 C. X-ray diffraction results show that both MOMR-200 and MOMC-200 have ordered hexagonal mesoporous symmetry, and N2 isotherms indicate that these samples have uniform mesopores (3.71, 3.45 nm), high surface area (328, 621 m2/g) and large pore volume (0.31, 0.43 cm3/g). Transmission electron microscopy shows that iron nanoparticles, which are superparamagnetic in nature, are dispersed in the network. More importantly, the high temperature (200 C) products exhibit much better stability than the samples synthesized at low temperature (100 C). Interestingly, MOMC-200 has higher adsorption capacity for organic dyes when compared with commercial adsorbents (activated carbon and macroporous resin: XAD-4). Combining the advantages such as magnetically active, thermally stable networks, ordered and open mesopores, high surface area, large pore volume, adsorption of pollutants in water and desorption in ethanol solvent, MOMC-200 is potentially important for water treatments.


High temperature synthesis Ordered mesoporous carbon Magnetically active Adsorption Stability 



This work is supported by the State Basic Research Project of China (2009CB623507) and National Natural Science Foundation of China (20973079).

Supplementary material

10450_2012_9408_MOESM1_ESM.pdf (85 kb)
(PDF 85 kB)


  1. Bourlinos, A.B., Simopoulos, A., Boukos, N., Petridis, D.: Magnetic modification of the external surfaces in the MCM-41 porous silica: synthesis, characterization, and functionalization. J. Phys. Chem. B 105, 7432–7437 (2001) CrossRefGoogle Scholar
  2. Celer, E.B., Jaroniec, M.: Temperature-programmed microwave-assisted synthesis of SBA-15 ordered mesoporous silica. J. Am. Chem. Soc. 128, 14408–14414 (2006) CrossRefGoogle Scholar
  3. Corma, A.: From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2419 (1997) CrossRefGoogle Scholar
  4. Fröba, M., Köhn, R., Bouffaud, G.: Fe2O3 nanoparticles within mesoporous MCM-48 silica: in situ formation and characterization. Chem. Mater. 11, 2858–2865 (1999) CrossRefGoogle Scholar
  5. Gross, A.F., Diehl, M.R., Beverly, K.C., Richman, E.K., Tolbert, S.H.: Controlling magnetic coupling between cobalt nanoparticles through nanoscale confinement in hexagonal mesoporous silica. J. Phys. Chem. B 107, 5475–5482 (2003) CrossRefGoogle Scholar
  6. Han, Y., Li, D.F., Zhao, L., Song, J.W., Yang, X.Y., Li, N., Di, Y., Li, C.J., Wu, S., Xu, X.Z., Meng, X.J., Lin, K.F., Xiao, F.S.: High-temperature generalized synthesis of stable ordered mesoporous silica-based materials by using fluorocarbon-hydrocarbon surfactant mixtures. Angew. Chem. Int. Ed. 42, 3633–3637 (2003) CrossRefGoogle Scholar
  7. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid-template mechanism. Nature 359, 710–712 (1992) CrossRefGoogle Scholar
  8. Li, D., Han, Y., Song, J.W., Zhao, L., Xu, X.Z., Di, Y., Xiao, F.S.: High-temperature synthesis of stable ordered mesoporous silica materials by using fluorocarbon–hydrocarbon surfactant mixtures. Chem. Eur. J. 10, 5911–5922 (2004) CrossRefGoogle Scholar
  9. Liang, C.D., Li, Z.J., Dai, S.: Mesoporous carbon materials synthesis and modification. Angew. Chem. Int. Ed. 47, 3696–3717 (2008) CrossRefGoogle Scholar
  10. Liu, F.J., Li, C.J., Ren, L.M., Meng, X.J., Zhang, H., Xiao, F.-S.: High-temperature synthesis of stable and ordered mesoporous polymer monoliths with low dielectric constants. J. Mater. Chem. 19, 7921–7928 (2009) CrossRefGoogle Scholar
  11. Lu, A.H., Schmidt, W., Matoussevitch, N., Bǒnnemann, H., Spliethoff, B., Tesche, B., Bill, E., Kiefer, W., Schüth, F.: Nanoengineering of a magnetically separable hydrogenation catalyst. Angew. Chem. Int. Ed. 43, 4303–4306 (2004a) CrossRefGoogle Scholar
  12. Lu, A.H., Li, W.C., Kiefer, A., Schmidt, W., Bill, E., Fink, G., Schüth, F.: Fabrication of magnetically separable mesostructured silica with an open pore system. J. Am. Chem. Soc. 126, 8616–8617 (2004b) CrossRefGoogle Scholar
  13. Lu, A.H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1224 (2007) CrossRefGoogle Scholar
  14. Meng, Y., Gu, D., Zhang, F.Q., Shi, Y.F., Yang, H.F., Li, Z., Yu, C.Z., Tu, B., Zhao, D.Y.: Ordered mesoporous polymers and homologous carbon frameworks amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 44, 7053–7059 (2005) CrossRefGoogle Scholar
  15. Su, F.B., Zeng, J.H., Bao, X.Y., Yu, Y.S., Lee, J.Y., Zhao, X.S.: Preparation and characterization of highly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells. Chem. Mater. 17, 3960–3967 (2005) CrossRefGoogle Scholar
  16. Sun, Z.H., Wang, L.F., Liu, P.P., Wang, S.C., Sun, B., Jiang, D.Z., Xiao, F.-S.: Magnetically motive porous sphere composite and its excellent properties for the removal of pollutants in water by adsorption and desorption cycles. Adv. Mater. 18, 1968–1971 (2006) CrossRefGoogle Scholar
  17. Teunissen, W., Grootde, F.M.F., Geus, J., Stephan, O., Tence, M., Colliex, C.: The structure of carbon encapsulated NiFe nanoparticles. J. Catal. 204, 169–174 (2001) CrossRefGoogle Scholar
  18. Vinu, A., Srinivasu, P., Takahashi, M., Mori, T., Balasubramanian, V.V.: Controlling the textural parameters of mesoporous carbon materials. Ariga K. Microporous Mesoporous Mater. 100, 20–26 (2007) CrossRefGoogle Scholar
  19. Wan, Y., Zhao, D.Y.: On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 107, 2821–2860 (2007) CrossRefGoogle Scholar
  20. Wang, X.Q., Dai, S.: A simple method to ordered mesoporous carbons containing nickel nanoparticles. Adsorption 15, 138–144 (2009) CrossRefGoogle Scholar
  21. Wang, L.F., Lin, K.F., Di, Y., Zhang, D.L., Li, C.J., Yang, Q., Yin, C.Y., Sun, Z.H., Jiang, D.Z., Xiao, F.-S.: High-temperature synthesis of stable ordered mesoporous silica materials using mesoporous carbon as a hard template. Microporous Mesoporous Mater. 86, 81 (2005) CrossRefGoogle Scholar
  22. Xiao, N., Wang, L., Zou, Y.C., Wang, C.Y., Ji, Y.Y., Song, J.W., Li, F., Meng, X.J., Xiao, F.S.: High-temperature synthesis of ordered mesoporous silicas from solo hydrocarbon surfactants and understanding of their synthetic mechanisms. J. Mater. Chem. 19, 661–665 (2009) CrossRefGoogle Scholar
  23. Yang, P.D., Zhao, D.Y., Margolese, D.I., Chmelka, B.F., Stucky, G.D.: Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152–155 (1998) CrossRefGoogle Scholar
  24. Yi, D.K., Lee, S.S., Papaefthymiou, G.C., Ying, J.Y.: Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chem. Mater. 18, 614–619 (2006) CrossRefGoogle Scholar
  25. Zhai, Y.P., Dou, Y.Q., Liu, X.X., Tu, B., Zhao, D.Y.: One-pot synthesis of magnetically separable ordered mesoporous carbon. J. Mater. Chem. 19, 3292–3300 (2009) CrossRefGoogle Scholar
  26. Zhang, F.Q., Meng, Y., Gu, D., Yan, Y., Yu, C.Z., Tu, B., Zhao, D.Y.: A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with iad bicontinuous cubic structure. J. Am. Chem. Soc. 127, 13508–13509 (2005) CrossRefGoogle Scholar
  27. Zhang, L., Qiao, S.Z., Jin, Y.G., Chen, Z.G., Gu, H.C., Lu, G.Q.: Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals: fabrication and structure control. Adv. Mater. 20, 805–809 (2008) CrossRefGoogle Scholar
  28. Zhao, D.Y., Feng, J.L., Huo, Q.S., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998a) CrossRefGoogle Scholar
  29. Zhao, D.Y., Huo, Q.S., Feng, J.L., Chmelka, B.F., Stucky, G.D.: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998b) CrossRefGoogle Scholar
  30. Zhao, W., Gu, J., Zhang, L., Chen, H., Shi, J.: Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J. Am. Chem. Soc. 127, 8916–8917 (2005) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Fujian Liu
    • 1
  • Hao Zhang
    • 2
  • Longfeng Zhu
    • 2
  • Yanmei Liao
    • 3
  • Faisal Nawaz
    • 2
  • Xiangju Meng
    • 3
  • Feng-Shou Xiao
    • 3
    Email author
  1. 1.Institute of Applied Chemistry, Department of ChemistryShaoxing UniversityShaoxingChina
  2. 2.State Key Laboratory of Inorganic Synthesis and Preparative Chemistry and College of ChemistryJilin UniversityChangchunP.R. China
  3. 3.Key Lab of Applied Chemistry of Zhejiang Province, Department of ChemistryZhejiang University (XiXi Campus)HangzhouChina

Personalised recommendations