, Volume 18, Issue 3–4, pp 163–171 | Cite as

Amino functionalised Silica-Aerogels for CO2-adsorption at low partial pressure

  • K. WörmeyerEmail author
  • M. Alnaief
  • I. Smirnova


Effective adsorption of CO2 at low partial pressures is required for many technical processes, such as gas purification or CO2 removal in closed loop environmental control systems. Since the concentration of CO2 in such applications is rather low, a high adsorption capacity is a required property for the adsorbent. Silica aerogels possessing an open pore structure, a high porosity and a high surface area, have a great potential for utilisation as CO2 adsorbents. Nonetheless in order to reach high adsorption capacities, silica aerogels should be functionalised, for instance by amino functionalisation. In this work, two different functionalisation methods were applied for the generation of amino functionalised aerogels: co-condensation during the sol-gel process and post-treatment of the gel. The co-condensation functionalisation allows the introduction of up to 1.44 wt.% nitrogen into the aerogel structure with minor reductions in surface area, leading however only to minor increases in the adsorption capacity at low partial pressures. The post functionalisation of the gel causes a greater loss in surface area, but the CO2 adsorption capacity increases, due to the introduction of higher amounts of amino groups into the aerogel structure (up to 5.2 wt.% nitrogen). Respectively, 0.523 mmol CO2/g aerogel could be adsorbed at 250 Pa. This value is comparable with the adsorption capacity at this pressure of a standard commercially available adsorbent, Zeolite 13X.


Carbon dioxide adsorption Silica Aerogel Amino functionalisation Zeolite 13X Low partial pressure 



The authors are grateful to the “Bundesministerium für Bildung und Forschung” (BMBF) for their financial support.


  1. Alnaief, M., Smirnova, I.: Effect of surface functionalization of silica aerogel on their adsorptive and release properties. J. Non-Cryst. Solids 356(33–34), 1644–1649 (2010) CrossRefGoogle Scholar
  2. Alnaief, M., Smirnova, I.: In situ production of spherical aerogel micro particles. J. Supercrit. Fluids 55(3), 1118–1123 (2011) CrossRefGoogle Scholar
  3. Belmabkhout, Y., Serna-Guerrero, R., Sayari, A.: Amine-bearing mesoporous silica for CO2 removal from dry and humid air. Chem. Eng. Sci. 65(11), 3695–3698 (2010) CrossRefGoogle Scholar
  4. Bois, L., Bonhomme, A., Ribes, A., Pais, B., Raffin, G., Tessier, F.: Functionalized silica for heavy metal ions adsorption. Colloids Surf., A, Physicochem. Eng. Asp. 221(1–3), 221–230 (2003) CrossRefGoogle Scholar
  5. Capadona, L.A., Meador, M.A.B., Alunni, A., Fabrizio, E.F., Vassilaras, P., Leventis, N.: Flexible, low-density polymer crosslinked silica aerogels. Polymer 47(16), 5754–5761 (2006) CrossRefGoogle Scholar
  6. Clavier, C.W., Rodman, D.L., Sinski, J.F., Allain, L.R., Im, H.J., Yang, Y., et al.: A method for the preparation of transparent mesoporous silica sol-gel monoliths containing grafted organic functional groups. J. Mater. Chem. 15(24), 2356–2361 (2005) CrossRefGoogle Scholar
  7. Cui, S., Cheng, W., Shen, X., Fan, M., Russell, A., Wu, Z., Yi, X.: Mesoporous amine-modified SiO2 aerogel: a potential CO2 sorbent. Energy Environ. Sci. 4, 2070–2074 (2011) CrossRefGoogle Scholar
  8. Franchi, R.S., Harlick, P.J.E., Sayari, A.: Applications of pore-expanded mesoporous silica. 2. Development of a high-capacity, water-tolerant adsorbent for CO2. Ind. Eng. Chem. Res. 44(21), 8007–8013 (2005) CrossRefGoogle Scholar
  9. Harlick, P.J.E., Sayari, A.: Applications of pore-expanded mesoporous silicas. 3. Triaminesilane grafting for enhanced CO2 adsorption. Ind. Eng. Chem. Res. 45(9), 3248–3255 (2006) CrossRefGoogle Scholar
  10. Harlick, P.J.E., Sayari, A.: Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance. Ind. Eng. Chem. Res. 46(2), 446–458 (2007) CrossRefGoogle Scholar
  11. Harlick, P.J.E., Tezel, F.H.: An experimental adsorbent screening study for CO2 removal from N2. Microporous Mesoporous Mater. 76(1–3), 71–79 (2004) CrossRefGoogle Scholar
  12. Hüsing, N., Schubert, U., Mezei, R., Fratzl, P., Riegel, B., Kiefer, W., et al.: Formation and structure of gel networks from Si(OEt)(4)/(MeO)(3)Si(CH2)(3)NR′(2) mixtures (NR′(2) = NH2 or NHCH2CH2NH2). Chem. Mater. 11(2), 451–457 (1999) CrossRefGoogle Scholar
  13. Im, H.J., Yang, Y.H., Allain, L.R., Barnes, C.E., Dai, S., Xue, Z.L.: Functionalized sol-gels for selective copper(II) separation. Environ. Sci. Technol. 34(11), 2209–2214 (2000) CrossRefGoogle Scholar
  14. Katti, A., Shimpi, N., Roy, S., Lu, H.B., Fabrizio, E.F., Dass, A., et al.: Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels. Chem. Mater. 18(2), 285–296 (2006) CrossRefGoogle Scholar
  15. Knox, J.C.: International Space Station Carbon Dioxide Removal Assembly Testing. SAE Technical Paper Series, ISSN 0148-7191, OOICES-234 (2000) CrossRefGoogle Scholar
  16. Leal, O., Bolívar, C., Ovalles, C., García, J.J., Espidel, Y.: Reversible adsorption of carbon dioxide on amine surface-bonded silica gel. Inorg. Chim. Acta 240(1–2), 183–189 (1995) CrossRefGoogle Scholar
  17. Meador, M.A.B., Fabrizio, E.F., Ilhan, F., Dass, A., Zhang, G.H., Vassilaras, P., et al.: Cross-linking amine-modified silica aerogels with epoxies: mechanically strong lightweight porous materials. Chem. Mater. 17(5), 1085–1098 (2005) CrossRefGoogle Scholar
  18. Plaza, M.G., Pevida, C., Arias, B., Casal, M.D., Martin, C.F., Fermoso, J., et al.: Different approaches for the development of Low-Cost CO2 adsorbents. J. Environ. Eng., ASCE 135(6), 426–432 (2009) CrossRefGoogle Scholar
  19. Satyapal, S., Filburn, T., Trela, J., Strange, J.: Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications. Energy Fuels 15, 250–255 (2001) CrossRefGoogle Scholar
  20. Santos, A., Ajbary, M., Kherbeche, A., Pinero, M., De la Rosa-Fox, N., Esquivias, L.: Fast CO2 sequestration by aerogel composites. J. Sol-Gel Sci. Technol. 45, 291–297 (2008) CrossRefGoogle Scholar
  21. Serna-Guerrero, R., Belmabkhout, Y., Sayari, A.: Further investigations of CO2 capture using triamine-grafted pore-expanded mesoporous silica. Chem. Eng. J. 158(3), 513–519 (2010) CrossRefGoogle Scholar
  22. Smirnova, I., Arlt, W.: Synthesis of silica aerogels: influence of the supercritical CO2 on the sol-gel process. J. Sol-Gel Sci. Technol. 28, 175–184 (2003) CrossRefGoogle Scholar
  23. Tang, Y., Landskron, K.: CO2-sorption properties of organosilicas with bridging amine functionalities inside the framework. J. Phys. Chem. C 114(6), 2494–2498 (2010) CrossRefGoogle Scholar
  24. Vaidhyanathan, R., Iremonger, S.S., Dawson, K.W., Shimizu, G.K.H.: An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures. Chem. Commun. 35, 5230–5232 (2009) CrossRefGoogle Scholar
  25. Zhang, J., Singh, R., Webley, P.A.: Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous Mesoporous Mater. 111(1–3), 478–487 (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Thermal Separation ProcessesHamburg University of TechnologyHamburgGermany

Personalised recommendations