Adsorption

, Volume 17, Issue 4, pp 663–673 | Cite as

Characteristics of sulfur removal by silver-titania adsorbents at ambient conditions

Article

Abstract

Sulfur capacity of SiO2, TiO2 and γ-Al2O3 structures was investigated. Thermal treatment of TiO2 and γ-Al2O3 in air increased their respective sulfur capacity by 67 and 43%. Sulfur capacity was associated with surface acidity and the improvement attributed to the formation of bronsted acid sites. Addition of 4wt% transition metals further enhanced the sulfur capacity of TiO2 with Ag indicating the highest increase. Comparison of sulfur capacity of Ag/TiO2 with other adsorbents was made using JP5 fuel with sulfur concentration of 1172 ppmw. Ag/TiO2 adsorbent demonstrated a saturation sulfur capacity of 8.20 mg/g. A significant loss in sulfur capacity was observed between real and model fuel compositions. Various factors resulting in this loss was investigated such as the effect of additives, competitive adsorption and the structure of sulfur heterocycles.

Keywords

Adsorptive desulfurization Fuel additives Surface acidity Competitive adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacha, J., Barnes, F., Franklin, M., Gibbs, L., Hemighaus, G., Hogue, N., Lesnini, D., Lind, J., Maybury, J., Morris, J.: Aviation Fuels Technical Review (FTR-3): Chevron Products Company (2000) Google Scholar
  2. Benard, J., Oudar, J., Carbone-Brouty, F.: Reversible chemisorption of sulfur on silver. Surf. Sci. 3, 359–372 (1965) CrossRefGoogle Scholar
  3. Bhandari, M.V., Ko, H., Chang, P.G., Jung, H.S., Cho, S., Kim, J.: Desulfurization of diesel using ion-exchanged zeolites. Chem. Eng. Sci. 2006, 2599–2608 (2006) Google Scholar
  4. Boehm, P.H.: Chemical identification of surface groups. Adv. Catal. 16, 179–274 (1966) CrossRefGoogle Scholar
  5. Contreras, M., Lagos, G., Escalona, N., Soto-Garrido, G., Radovic, L.R., Garcia, R.: On the methane adsorption capacity of activated carbons: in search of a correlation with adsorbent properties. J. Chem. Technol. Biotechnol. 84, 1736–1741 (2009) CrossRefGoogle Scholar
  6. Diran, B.: The Little Adsorption Book: A Practical Guide for Engineers and Scientists. CRC Press, Boca Raton (1997) Google Scholar
  7. Doolin, K.P., Alerasool, S., Zalewski, J.D., Hoffman, F.J.: Acidity studies of titania-silica mixed oxides. Catal. Lett. 25, 209–223 (1994) CrossRefGoogle Scholar
  8. Du, Y., Deskins, A.N., Zhang, Z., Dohnalek, Z., Dupuis, M., Lyubinetsky, I.: Two pathways for water interaction with oxygen adatoms on TiO2(110). Phys. Rev. Lett. 102, 096102 (2009) CrossRefGoogle Scholar
  9. Fletcher, J.A., Uygur, Y., Thomas, M.K.: Role of surface functional groups in the adsorption kinetics of water vapor on microporous activated carbons. J. Phys. Chem. C 111, 8349–8359 (2007) CrossRefGoogle Scholar
  10. Gislason, J.J., Schmidt, R., Welch, B.M., Simon, E.D., Morton, W.R.: Desulfurization of cracked gasolines and diesel fuels using cadmium oxide and a promoter. US patent application 20040007130 (2004) Google Scholar
  11. Grossman, J.M., Lee, K.M., Prince, C.R., Garrett, K.K., George, N.G., Pickering, J.I.: Microbial desulfurization of a crude oil middle-distillate fraction: analysis of the extent of sulfur removal and the effect of removal on remaining sulfur. Appl. Environ. Microbiol. 65, 181–188 (1999) Google Scholar
  12. Hernández-Maldonado, J.A., Yang, T.R.: New sorbents for desulfurization of diesel fuels via π-complexation. AIChE J. 50, 791–795 (2003) CrossRefGoogle Scholar
  13. Hernández-Maldonado, A.J., Yang, R.T.: Desulfurization of diesel fuels via π-complexation with nickel(II)-exchanged X- and Y-Zeolites. Ind. Eng. Chem. Res. 43, 9 (2004a) Google Scholar
  14. Hernández-Maldonado, A.J., Yang, R.T.: New sorbents for desulfurization of diesel fuels via π-complexation. AIChE J. 50, 791–801 (2004b) CrossRefGoogle Scholar
  15. Hernandez-Maldonado, J.A., Yang, T.R.: Desulfurization of diesel fuels by adsorption via π-complexation with vapor-phase exchanged Cu(I)-Y zeolites. J. Am. Chem. Soc. 126, 992–993 (2004c) CrossRefGoogle Scholar
  16. Hernández-Maldonado, A.J., Stamatis, S.D., Yang, R.T.: New sorbents for desulfurization of diesel fuels via π complexation: layered beds and regeneration. Ind. Eng. Chem. Res. 43, 769–777 (2004a) CrossRefGoogle Scholar
  17. Hernández-Maldonado, A.J., Yang, R.T., Cannella, W.: Desulfurization of commercial jet fuels by adsorption via π-complexation with vapor phase ion exchanged Cu(I)-Y zeolites. Ind. Eng. Chem. Res., 6142–6150 (2004b) Google Scholar
  18. Hernández-Maldonado, J.A., Gongshin, Q., Yang, T.R.: Desulfurization of commercial fuels by π-complexation: monolayer CuCl/g-Al2O3. Appl. Catal. B, Environ. 61, 212–219 (2005a) CrossRefGoogle Scholar
  19. Hernández-Maldonado, A.J., Yang, F.H., Qi, G., Yang, R.T.: Desulfurization of transportation fuels by π-complexation sorbents: Cu(I)-, Ni(II)-, and Zn(II)-zeolites. Appl. Catal. B, Environ. 56, 111–128 (2005b) CrossRefGoogle Scholar
  20. Jeevanandam, P., Klabunde, J.K., Tetzler, H.S.: Adsorption of thiophenes out of hydrocarbons using metal impregnated nanocrystalline aluminum oxide. Microporous Mesoporous Mater. 79, 101–110 (2005) CrossRefGoogle Scholar
  21. Khare, P.G.: Novel sorbents for desulfurization of gasoline or diesel fuel. US patent 6683024 (2001) Google Scholar
  22. Kim, H.J., Ma, X., Zhou, A., Song, C.: Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: a study on adsorptive selectivity and mechanism. Catal. Today 111, 74–83 (2006) CrossRefGoogle Scholar
  23. King, L.D., Li, L.: Removal of sulfur components from low sulfur gasoline using copper exchanged zeolite Y at ambient temperature. Catal. Today 116, 526–529 (2006) CrossRefGoogle Scholar
  24. Klein, J.: Biological processing of fossil fuels. Appl. Microbiol. Biotechnol. 52, 2–15 (1999) CrossRefGoogle Scholar
  25. Kobayakawa, K., Nakazawa, Y., Ikeda, M., Sato, Y., Fujishima, A.: Influence of the density of surface hydroxyl groups on titania photocatalytic activities. Ber. Bunsen-Gesellschaft 94, 1439–1443 (1990) Google Scholar
  26. Kulkarni, P.A., Muggli, S.D.: The effect of water on the acidity of TiO2 and sulfated titania. Appl. Catal. A, Gen. 302, 274–282 (2006) CrossRefGoogle Scholar
  27. Lavrenko, A.V., Malyshevskaya, I.A., Kuznetsova, I.L., Litvinenko, F.V., Pavlikov, N.V.: Features of high-temperature oxidation in air of silver and alloy Ag-Cu, and adsorption of oxygen on silver. Powder Metall. Met. Ceram. 45, 476–480 (2006) CrossRefGoogle Scholar
  28. Ma, X., Sakanishi, K., Isoda, T., Mochida, I.: Quantum chemical calculation on the desulfurization reactivities of heterocyclic sulfur compounds. Energy Fuels 9, 33–37 (1995) CrossRefGoogle Scholar
  29. Ma, X., Sprague, M., Song, C.: Deep desulfurization of gasoline by selective adsorption over nickel-based adsorbent for fuel cell applications. Ind. Eng. Chem. Res. 44, 5768–5775 (2005) CrossRefGoogle Scholar
  30. Ma, T., Tong, M., Zhang, Q., Liang, F., Liu, R.: Screening, identification of the strain FDS-1 for microbial desulfurization specially and its use in diesel oil desulfurization. Weishengwu Xuebao 46, 104–110 (2006) Google Scholar
  31. McFarland, L.B., Boron, J.D., Deever, W., Meyer, A.J., Johnson, R.A., Atlas, M.R.: Biocatalytic sulfur removal from fuels: applicability for producing low sulfur gasoline. Critical Rev. Microbiol. 24, 99–147 (1998) CrossRefGoogle Scholar
  32. Mei, H., Mei, W.B., Yen, F.T.: A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization. Fuel 82, 405–414 (2003) CrossRefGoogle Scholar
  33. Morton, W.R., Gislason, J.J., Schmidt, R., Welch, B.M.: Desulfurization and novel compositions for same. US patent 7220704 (2004a) Google Scholar
  34. Morton, W.R., Gislason, J.J., Schmidt, R., Welch, B.M.: Reduced-valence metal-promoted molybdenum oxide and tungsten oxide as petroleum desulfurization sorbents. US patent application 040890 (2004b) Google Scholar
  35. Morton, W.R., Gislason, J.J., Welch, B.M., Simon, E.D., Schmidt, R.: Promoted gallium or indium oxides as bulk and supported desulfurization catalysts for petroleum feedstocks. US patent application 063578 (2004c) Google Scholar
  36. Nair, S., Tatarchuk, B.: Supported silver adsorbents for selective removal of sulfur species from hydrocarbon fuels. Fuel (2010). doi:10.1016/j.fuel.2010.05.006 Google Scholar
  37. Price, G.A., Gislason, J.J., Dodwelll, W.G., Morton, W.R., Parks, D.G.: Desulfurization of hydrocarbon stream using novel compositions containing manganese oxide. US patent 7105140 (2003) Google Scholar
  38. Rajagopal, S., Marzari, A.J., Miranda, R.: Silica-alumina-supported Mo oxide catalysts: genesis and demise of Brønsted-Lewis acidity. J. Catal. 151, 192–203 (1995) CrossRefGoogle Scholar
  39. Richardson, L.R., Benson, W.S.: A study of the surface acidity of cracking catalyst. J. Phys. Chem. 61, 405–411 (1957) CrossRefGoogle Scholar
  40. Rovida, G., Pratesi, F.: Sulfur chemisorption on the silver (111) and (100) faces. Vide Couches Minces 201, 321–324 (1980) Google Scholar
  41. Rovida, G., Pratesi, F.: Sulfur overlayers on the low-index faces of silver. Surf. Sci. 104, 609–624 (1981) CrossRefGoogle Scholar
  42. Salas, V.B., Gonzalez, R.N., Lara, B.A., Beltran, C.M., Muleshkova, V.L.: Indoor corrosion of silver components used in electronic industry. In: International Corrosion Congress: Frontiers in Corrosion Science and Technology, 15th, Granada, Spain, Sept, 22–27 (2002) Google Scholar
  43. Satokawa, S., Kobayashi, Y., Fujiki, H.: Adsorptive removal of dimethylsulfide and t-butylmercaptan from pipeline natural gas fuel on Ag zeolites under ambient conditions. Appl. Catal. B, Environ. 56, 51–56 (2005) CrossRefGoogle Scholar
  44. Satokawa, S., Shimizu, K., Satsuma, A.: Adsorptive removal of organic sulfur compounds in city gas at ambient temperature using silver ion-exchanged zeolites. Zeoraito 24, 60–66 (2007) Google Scholar
  45. Simon, E.D., Morton, W.R., Schmidt, R., Gislason, J.J., Welch, B.M.: Reduced-valence metal-promoted niobium oxide and tantalum oxide as petroleum desulfurization sorbents. US patent application 040887 (2004) Google Scholar
  46. Song, C., Ma, X.: Ultra-deep desulfurization of liquid hydrocarbon fuels: chemistry and process. Int. J. Green. Energy 2, 167–191 (2004) CrossRefGoogle Scholar
  47. Sughrue, L.E., Johnson, M.M., Dodwell, W.G., Reed, E.L., Bares, E.J., Gislason, J.J., Morton, W.R., Malandra, L.J.: Desulfurization and sorbents for same. US patent 6656877 (2003) Google Scholar
  48. Takahashi, A., Yang, H.F., Yang, T.R.: New sorbents for desulfurization by π-complexation: thiophene/benzene adsorption. Ind. Eng. Chem. Res. 40, 6236–6239 (2001a) CrossRefGoogle Scholar
  49. Takahashi, A., Yang, T.R.: Cu(I)-Y-Zeolite as a superior adsorbent for diene/olefin separation. Langmuir 17, 8405–8414 (2001b) CrossRefGoogle Scholar
  50. Tatarchuk, B., Yang, H., Nair, S.: Silver-based sorbents. US patent application 12/112,700 (2008) Google Scholar
  51. Velu, S., Ma, X., Song, C.: Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents. Ind. Eng. Chem. Res. 42, 5293–5305 (2003) CrossRefGoogle Scholar
  52. Velu, S., Song, C., Engelhard, H.M., Chin, Y.: Adsorptive removal of organic sulfur compounds from jet fuel over K-exchanged NiY zeolites prepared by impregnation and ion exchange. Ind. Eng. Chem. Res. 44, 5740–5750 (2005a) CrossRefGoogle Scholar
  53. Velu, S., Ma, X., Song, C., Namazian, M., Sethuraman, S., Venkataraman, G.: Desulfurization of JP-8 jet fuel by selective adsorption over a Ni-based adsorbent for micro solid oxide fuel cells. Energy Fuels 19, 1116–1125 (2005b) CrossRefGoogle Scholar
  54. Wang, W., Wang, S., Liu, H., Wang, Z.: Desulfurization of gasoline by a new method of electrochemical catalytic oxidation. Fuel 86, 2747–2753 (2007a) CrossRefGoogle Scholar
  55. Wang, W., Wang, S., Wang, Y., Liu, H., Wang, Z.: A new approach to deep desulfurization of gasoline by electrochemically catalytic oxidation and extraction. Fuel Process. Technol. 88, 1002–1008 (2007b) CrossRefGoogle Scholar
  56. Wang, Y., Yang, H.F., Yang, T.R., Heinzel, M.J., Nickens, D.A.: Desulfurization of high-sulfur jet fuel by π-complexation with copper and palladium halide sorbents. Ind. Eng. Chem. Res. 45, 7649–7655 (2006) CrossRefGoogle Scholar
  57. Xie, Y., Tang, Y.: Spontaneous monolayer dispersion of oxides and salts onto surfaces of supports: applications to heterogeneous catalysis. Adv. Catal. 37, 1–43 (1990) CrossRefGoogle Scholar
  58. Xue, M., Chitrakar, R., Sakane, K., Hirotsu, T., Ooi, K., Yoshimura, Y., Toba, M., Feng, Q.: Preparation of cerium-loaded Y-zeolites for removal of organic sulfur compounds from hydrodesulfurizated gasoline and diesel oil. J. Colloid Interface Sci. 298, 535–542 (2006) CrossRefGoogle Scholar
  59. Yang, T.R., Hernandez-Maldonado, J.A., Yang, H.F.: Desulfurization of transportation fuels with zeolites under ambient conditions. Science 301, 79–81 (2003) CrossRefGoogle Scholar
  60. Yang, F.H., Hernandez-Maldonado, A.J., Yang, R.T.: Selective adsorption of organosulfur compounds from transportation fuels by π-complexation. Sep. Sci. Technol. 39, 1717–1733 (2004) CrossRefGoogle Scholar
  61. Zakharyants, A.A., Murygina, P.V., Kalyuzhnyi, V.S.: Biodesulfurization of dibenzothiophene and its derivatives. Usp. Sovrem. Biol. 125, 104–114 (2005) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemical EngineeringAuburn UniversityAuburnUSA

Personalised recommendations