Advertisement

Adsorption

, 17:653 | Cite as

Assessing surface chemistry and pore structure of active carbons by a combination of physisorption (H2O, Ar, N2, CO2), XPS and TPD-MS

  • M. ThommesEmail author
  • C. Morlay
  • R. Ahmad
  • J. P. Joly
Article

Abstract

In order to address open questions concerning the surface chemistry and pore structure characterization of nanoporous carbons, we performed extensive experiments by combining various experimental techniques on a series of commercially available activated carbons which exhibit diverse surface chemistry characteristics. Pore size analysis was performed on Ar (87 K), N2 (77 K) and CO2 (273 K) adsorption isotherms using state-of-the art methods based on density functional theory, including the recently developed quenched solid density functional theory (QSDFT). A detailed study of the surface chemistry was obtained by applying temperature programmed desorption coupled with mass spectrometry (TPD-MS) as well as XPS (X-Ray-Photoelectron Scattering). This information together with the pore structure information leads to a reliable interpretation of systematic water adsorption measurements obtained on these materials. Our results clearly suggest that water adsorption is indeed a sensitive tool for detecting differences in surface chemistry between chemically and physically activated active carbon materials with comparable ultramicropore structure. The occurrence of sorption hysteresis associated with the filling of micro- and narrow mesopores (in a range where nitrogen and argon isotherms are reversible) provides additional structural information, complementary to the insights from argon/nitrogen/carbon dioxide adsorption.

Keywords

Activated carbon Pore size analysis Water adsorption Carbon dioxide adsorption Nitrogen adsorption Quenched solid density functional theory (QSDFT) TPD-MS XPS Surface chemistry 

References

  1. Alcaniz-Monge, J.A., Linares-Solano, A., Rand, B.: Water adsorption on activated carbons: study of water adsorption in micro- and mesopores. J. Phys. Chem. B 105, 7998 (2001) CrossRefGoogle Scholar
  2. Alcaniz-Monge, J.A., Linares-Solano, A., Rand, B.: Mechanism of adsorption in carbon micropores as revealed by a study of activated carbon fibers. J. Phys. Chem. B 106, 3209 (2002) CrossRefGoogle Scholar
  3. Brennan, J.K., Bandosz, T.J., Thomson, K.T., Gubbins, K.E.: Water in porous carbons. Colloids Surf. 187–188, 539 (2001) Google Scholar
  4. De La Puente, G., Pis, J.J., Menendez, J.A., Grange, J.: Thermal stability of oxygenated functions in activated carbons. J. Anal. Appl. Pyrolysis 43, 125 (1997) CrossRefGoogle Scholar
  5. Do, D.D., Do, H.D.: Modeling of adsorption on nongraphitized carbon surface: GCMC simulation studies and comparison with experimental data. J. Phys. Chem. B 110, 17531 (2006) CrossRefGoogle Scholar
  6. Do, D.D., Do, H.D.: A model for water adsorption in activated carbon. Carbon 38, 767 (2000) CrossRefGoogle Scholar
  7. Figueiredo, J.L., Pereira, M.F.R., Freitas, M.M.A., Orfao, J.J.M.: Modification of the surface chemistry of activated carbons. Carbon 37, 1379 (1999) CrossRefGoogle Scholar
  8. Iiyama, T., Ruike, M., Kaneko, K.: Structural mechanism of water adsorption in hydrophobic micropores from in situ small X-ray scattering. Chem. Phys. Lett. 331, 359 (2000) CrossRefGoogle Scholar
  9. ISO-15901-3: Pore size distribution and porosity of solid materials by mercury porosimetry and as adsorption. Part 3. Analysis of micropores by gas adsorption (2007) Google Scholar
  10. Garrido, J., Linares-Solano, A., Martín-Martínez, J.M., Molina-Sabio, M., Rodríguez-Reinoso, F., Torregrosa, R.: Use of nitrogen vs. carbon dioxide in the characterization of activated carbons. Langmuir 3, 76 (1987) CrossRefGoogle Scholar
  11. Haydar, S., Moreno-Castilla, C., Ferro-Garcia, M.A., Carrasco-Marin, F., Rivera-Utrilla, J., Perrard, A., Joly, J.P.: Carbon 38, 1297–1308 (2000) CrossRefGoogle Scholar
  12. Jagiello, J., Olivier, J.P.: Simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. J. Phys. Chem. C 113, 19382–19385 (2009) CrossRefGoogle Scholar
  13. Kaneko, K., Hanzawa, Y., Iiyama, T., Kanda, T., Suzuki, T.: Cluster mediated water adsorption on carbon nanopores. Adsorption 5, 7 (1999) CrossRefGoogle Scholar
  14. Kimura, T., Kanoh, H., Kanda, T., Ohkubo, T., Hattori, Y., Higaonna, Y., Denoyel, R., Kaneko, K.: Cluster associated filling of water in hydrophobic carbon micropores. J. Phys. Chem. B 108, 14043 (2004) CrossRefGoogle Scholar
  15. Lastoskie, C., Gubbins, K.E., Quirke, N.: Pore size distribution analysis of microporous carbons: a density functional theory approach. J. Chem. Phys. 97(18), 4786–4796 (1993) CrossRefGoogle Scholar
  16. Lodewyckx, P., Raymundo-Piñero, E., Wullens, H., Vaclavikova, M., Béguin, F.: Water isotherms of structurally identical carbons with different amounts of surface oxygen groups. In: CD Proceedings of the International Carbon Conference, Nagano, Japan(2008) Google Scholar
  17. Lodewyckx, P., Vansant, E.F.: Water isotherms of activated carbons with small amounts of surface oxygen. Carbon 37, 1647–1649 (1999) CrossRefGoogle Scholar
  18. Lucena, S.M.P., Paiva, C.A.S., Silvino, P.F.G., Azevedo, D.C.S., Cavalcante, C.L.: The effect of heterogeneity in the random. Carbon 48, 2554 (2010) CrossRefGoogle Scholar
  19. Liu, J.C., Monson, P.A.: Monte Carlo simulation of water adsorption in activated carbon. Ind. Eng. Chem. Res. 45, 5649 (2006) CrossRefGoogle Scholar
  20. Liu, J.-C., Monson, P.A.: Does water condense in carbon pores. Langmuir 21, 10219 (2005) CrossRefGoogle Scholar
  21. Monson, P.A.: Contact angles, pore condensation, and hysteresis: insights from a simple molecular model. Langmuir 24, (2008) Google Scholar
  22. Morlay, C., Joly, J.-P.: Contribution to the textural characterisation of Filtrasorb 400 and other commercial activated carbons commonly used for water treatment. J. Porous. Mat. 5, 535–543 (2009) Google Scholar
  23. Neimark, A.V., Ravikovitch, P.I., Lin, Y., Thommes, M.: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47, 1617 (2009) CrossRefGoogle Scholar
  24. Ohba, T., Kanoh, H., Kaneko, K.: Cluster-growth induced water adsorption in hydrophobic carbon nanopores. J. Phys. Chem. B 108(39), 14964–14969 (2004) CrossRefGoogle Scholar
  25. Olivier, J.P., Conklin, W.B., von Szombathely, M.: Determination of pore-size distribution from density functional theory—a comparison of nitrogen and argon results. Characterization of porous solid III. Stud. Surf. Sci. Catal. 87, 81 (1994) CrossRefGoogle Scholar
  26. Ravikovitch, P.I., Neimark, A.V.: Density functional theory model of adsorption on amorphous and microporous silica materials. Langmuir 22, 11171 (2006) CrossRefGoogle Scholar
  27. Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16, 2311–2320 (2000) CrossRefGoogle Scholar
  28. Rodríguez-Reinoso, F., Garrido, J., Martín-Martínez, J.M., Molina-Sabio, M., Torregrosa, R.: The combined use of different approaches in the characterization of microporous carbons. Carbon 27, 23 (1989) CrossRefGoogle Scholar
  29. Seaton, N.A., Walton, J.P.R.B., Quirke, N.: A new analysis method for the determination of the pore-size distribution of porous carbons from nitrogen adsorption measurements. Carbon 27, 853–861 (1989) CrossRefGoogle Scholar
  30. Slasli, A.M., Jorge, M., Stoeckli, F., Seaton, N.: Water adsorption by activated carbons in relation to their microporous structure. Carbon 41, 479–486 (2003) CrossRefGoogle Scholar
  31. Slasli, A.M., Jorge, M., Stoeckli, F., Seaton, N.: Modelling of water adsorption by activated carbons: effects of microporous structure and oxygen content. Carbon 42, 1947–1952 (2004) CrossRefGoogle Scholar
  32. Stoeckli, F., Lavanchy, A.: The adsorption of water by active carbons, in relation to their chemical and structural properties. Carbon 38, 475–477 (2000) CrossRefGoogle Scholar
  33. Striolo, A., Gubbins, K.E., Gruszkiewicsz, M.S., Cole, D.R., Somonson, J.M., Chialvo, A.A., Cummings, P.T., Burchell, T.D., More, K.L.: Effect of temperature on the adsorption of water in porous carbons. Langmuir 21, 9457–9467 (2005) CrossRefGoogle Scholar
  34. Sullivan, P.D., Stone, B.R., Hashisho, Z., Rood, M.J.: Water adsorption with hysteresis effect on microporous activated carbon fabrics. Adsorption 13, 173 (2007) CrossRefGoogle Scholar
  35. Szymanski, G.S., Karpinski, Z., Biniak, S., Swiatkowski, A.: The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon. Carbon 40, 2627–2639 (2002) CrossRefGoogle Scholar
  36. Thommes, M.: Physical adsorption characterization of nanoporous materials. Chem. Ing. Tech. 7, 1059 (2010) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Quantachrome InstrumentsBoynton BeachUSA
  2. 2.Département de Chimie et BiochimieUniversité de Lyon, CNRSVilleurbanne CedexFrance

Personalised recommendations