, Volume 17, Issue 3, pp 595–602 | Cite as

Nitromethane-water competitive adsorption over modified activated carbon

  • L. Gonzalo-Chacón
  • A. Arcoya
  • I. Rodríguez-RamosEmail author
  • E. Gallegos-Suárez
  • A. Guerrero-Ruiz


Modifications of texture and surface properties of a commercial activated carbon (Norit GF-40) were performed by several treatments in order to study their effects on the selective adsorption of nitromethane from nitromethane/water vapor mixtures. Characterisation of the samples by nitrogen adsorption and thermal analysis showed that HNO3 treatments produce important losses of porosity and surface area, accompanied of an increase of oxygenated functional groups on the surface of carbon, which are progressively removed by heating at temperatures between 573 and 1073 K. All this leads to a drastic decrease of the adsorption capacity per gram of adsorbent with respect to the raw carbon, which offers, on the other hand, the best adsorptive performance. Oxidation by H2O2 does not practically affect its textural properties and introduces an important amount of oxygen functional groups at the surface, but changes in the adsorptive properties of carbon are insignificant. Sample oxidised by H2O2 and subsequently treated by diethylentriamine shows a decrease in adsorption capacity, without any relevant loss of surface area. The raw carbon treated at high temperature that exhibits the highest surface area and where surface functional groups are absent, showed the greatest adsorption capacity for nitromethane, being much more selective for nitromethane than for water, in nitromethane-water mixtures. Adsorption capacity values for nitromethane on the different samples are related to the extent of the surface area, while water vapour adsorption seems to depend on the population of functional groups at the surface, which may work as adsorption sites.


Nitromethane Activated carbon Selective adsorption Adsorption capacity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandosz, T.S.: Surface chemistry of carbon materials. In: Serp, P., Figueiredo, J.L. (eds.) Carbon Materials for Catalysis, pp. 45–92. Wiley, New Jersey (2009) Google Scholar
  2. Boudou, J.P., Parent, P., Suárez-García, F., Villar-Rodil, S., Martínez-Alonso, A., Tascón, J.M.D.: Nitrogen in aramid-based activated carbon fibers by TPD, XPS and XANES. Carbon 44, 2452–2462 (2006) CrossRefGoogle Scholar
  3. Boyer, E., Kuo, K.K.: Modeling of nitromethane flame structure and burning behaviour. Proc. Combust. Inst. 31, 2045–2053 (2007) CrossRefGoogle Scholar
  4. Cerdeiriña, C.A., Tovar, C.A., González, D., Carballo, E., Romani, L.: Thermodynamics of the nitromethane + 1-butanol system near the upper critical point. Fluid Phase Equilib. 179, 101–115 (2001) CrossRefGoogle Scholar
  5. Figueiredo, J.L., Pereira, M.F.R., Freitas, M.M.A., Órfao, J.J.M.: Modification of the surface chemistry of activated carbons. Carbon 37, 1379–1389 (1999) CrossRefGoogle Scholar
  6. García, T., Murillo, R., Cazorla-Amorós, D., Mastral, A.M., Linares-Solano, A.: Role of the activated carbon surface chemistry in the adsorption of phenanthrene. Carbon 42, 1683–1689 (2004) CrossRefGoogle Scholar
  7. Gun’ko, V., Leboda, R., Turov, V., Zarko, V., Chuico, A.: Oxide, carbon, and carbon/mineral adsorbents for toxic, explosive, and narcotic compounds-synthesis, properties, and applications. In: Blitz, J.P., Gun’ko, V.M. (eds.) Surface Chemistry in Biomedical and Environmental Science, pp. 91–102. Springer, Berlin (2006) CrossRefGoogle Scholar
  8. Kheir, A.A., Haw, J.F.: Chemisorption of aci-nitromethane on strongly basic catalysts—an nmr probe of solid basicity. J. Am. Chem. Soc. 116, 817–818 (1994) CrossRefGoogle Scholar
  9. Longhi, M., Bertacche, V., Bianchi, C.L., Fomaro, L.: Preparation and characterization of aminated carbon from a single-step reaction. Chem. Mater. 18(17), 4130–4136 (2006) CrossRefGoogle Scholar
  10. Mattson, J.S., Mark, H.M. Jr.: Activated Carbon. Dekker, New York (1971) Google Scholar
  11. Molina-Sabio, M., Munecas-Vidal, M.A., Rodriguez-Reinoso, F.: Modification in porous texture and oxygen-surface groups of activated carbons by oxidation. Stud. Surf. Sci. Catal. 62, 329–339 (1991) CrossRefGoogle Scholar
  12. Park, S.K., Choo, H., Kevan, L.: Nitromethane decomposition over Cu-ZSM-5 and Co-ZSM-5. Phys. Chem. Chem. Phys. 3, 3247–3253 (2001) CrossRefGoogle Scholar
  13. Sepúlveda-Escribano, A., Coloma, F., Rodriguez-Reinoso, F.: Platinum catalysts supported on carbon blacks with different surface chemical properties. Appl. Catal. A, Gen. 173, 247–257 (1998) CrossRefGoogle Scholar
  14. Silva, A.R., Martins, M., Madalena, M., Freitas, A., Figueiredo, J.L., de Castro, B.: Anchoring of copper (II) acetylacetonate onto an activated carbon functionalised with a triamine. Eur. J. Inorg. Chem. 2004(10), 2027–2035 (2004) CrossRefGoogle Scholar
  15. Stavropoulos, G.G., Samaras, P., Sakellaropoulos, G.P.: J. Hazard. Mater. 151, 414–421 (2008) CrossRefGoogle Scholar
  16. Tomaszewski, W., Gun’ko, V.M., Skubiszewska-Zieba, J., Leboda, R.: Structural characteristics of modified activated carbons and adsorption of explosives. J. Colloid Interface Sci. 266, 388–402 (2003) CrossRefGoogle Scholar
  17. Yin, C.Y., Aroua, M.K., Daud, W.M.A.W.: Review of modifications of activated carbons for enhancing contaminant uptakes from aqueous Solutions. Sep. Purif. Technol. 53, 403–415 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • L. Gonzalo-Chacón
    • 1
  • A. Arcoya
    • 1
  • I. Rodríguez-Ramos
    • 1
    Email author
  • E. Gallegos-Suárez
    • 2
  • A. Guerrero-Ruiz
    • 2
  1. 1.Instituto de Catálisis y Petroleoquímica, CSICUnidad Asociada Grupo de Diseño y Aplicación de Catalizadores Heterogéneos, UNED-ICP (CSIC)MadridSpain
  2. 2.Dpto. Química Inorgánica y Técnica, Facultad de Ciencias UNEDUnidad Asociada Grupo de Diseño y Aplicación de Catalizadores Heterogéneos, UNED-ICP (CSIC)MadridSpain

Personalised recommendations