Adsorption

, Volume 17, Issue 1, pp 211–218 | Cite as

Investigation on specific adsorption of hydrogen on lithium-doped mesoporous silica

  • Masaru Kubo
  • Hiroshi Ushiyama
  • Atsushi Shimojima
  • Tatsuya Okubo
Article

Abstract

This paper reports the synthesis, structure, and hydrogen adsorption property of Li-doped mesoporous silica (MPS) with a 2D hexagonal structure. The Li-doping is achieved by impregnation of the cylindrical mesopores with an ethanol solution of lithium chloride followed by heat treatment. Detailed characterization by solid-state NMR, TG-MS, and FT-IR suggests that, during the heat treatment, lithium chloride reacts with surface ethoxy groups (≡Si-OEt) to form ≡SiOLi groups, while ethyl chloride is released into the gas phase. The hydrogen uptake at 77 K and 1 atm increases from 0.68 wt% for the undoped MPS to 0.81 wt% for Li-doped MPS (Li-MPS). The isosteric heat of adsorption is 4.8 kJ mol−1, which is consistent with the quantum chemistry calculation result (5.12 kJ mol−1). The specific hydrogen adsorption on Li-MPS would be explained by the frontier orbital interaction between HOMO of hydrogen molecules and LUMO of ≡SiOLi. These findings provide an important insight into the development of hydrogen storage materials with specific adsorption sites.

Keywords

Hydrogen adsorption Li doping Mesoporous silica Quantum chemistry calculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbatti, M., Jalbert, G., Nascimento, M.A.C.: The effects of the presence of an alkaline atomic cation in a molecular hydrogen environment. J. Chem. Phys. 114, 2213–2218 (2001) CrossRefGoogle Scholar
  2. Becke, A.D.: A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98, 1372–1377 (1993) CrossRefGoogle Scholar
  3. Belof, J.L., Stern, A.C., Eddaoudi, M., Space, B.: On the mechanism of hydrogen storage in a metal-organic framework material. J. Am. Chem. Soc. 129, 15202–15210 (2007) CrossRefGoogle Scholar
  4. Bushnell, J.E., Kemper, P.R., Bowers, M.T.: Na+/K+⋅(H2)1,2 clusters: binding-energies from theory and experiment. J. Phys. Chem. 98, 2044–2049 (1994) CrossRefGoogle Scholar
  5. Chino, N., Ogura, M., Kodaira, T., Izumi, J., Okubo, T.: Characterization of ESR active species on lithium chloride-modified mesoporous silica. J. Phys. Chem. B 109, 8574–8579 (2005) CrossRefGoogle Scholar
  6. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, revision C.02. Gaussian, Inc., Wallingford (2004) Google Scholar
  7. Han, S.S., Goddard, W.A.: Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature. J. Am. Chem. Soc. 129, 8422–8423 (2007) CrossRefGoogle Scholar
  8. Han, S.S., Goddard, W.A.: High H2 storage of hexagonal metal-organic frameworks from first-principles-based grand canonical Monte Carlo simulations. J. Phys. Chem. C 112(35), 13431–13436 (2008) CrossRefGoogle Scholar
  9. Han, S.S., Deng, W.Q., Goddard, W.A.: Improved designs of metal-organic frameworks for hydrogen storage. Angew. Chem. Int. Ed. 46, 6289–6292 (2007) CrossRefGoogle Scholar
  10. Himsl, D., Wallacher, D., Hartmann, M.: Improving the hydrogen-adsorption properties of a hydroxy-modified MIL-53(Al) structural analogue by lithium doping. Angew. Chem. Int. Ed. 48, 4639–4642 (2009) CrossRefGoogle Scholar
  11. Jhung, S.H., Yoon, J.W., Lee, S., Chang, J.S.: Low-temperature adsorption/storage of hydrogen on FAU, MFI, and MOR zeolites with various Si/Al ratios: effect of electrostatic fields and pore structures. Chem. Eur. J. 13, 6502–6507 (2007) CrossRefGoogle Scholar
  12. Lochan, R.C., Head-Gordon, M.: Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions. Phys. Chem. Chem. Phys. 8, 1357–1370 (2006) CrossRefGoogle Scholar
  13. Miyata, H., Noma, T., Watanabe, M., Kuroda, K.: Preparation of mesoporous silica films with fully aligned large mesochannels using nonionic surfactants. Chem. Mater. 14, 766–772 (2002) CrossRefGoogle Scholar
  14. Mulfort, K.L., Hupp, J.T.: Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. J. Am. Chem. Soc. 129, 9604–9605 (2007) CrossRefGoogle Scholar
  15. Mulfort, K.L., Hupp, J.T.: Alkali metal cation effects on hydrogen uptake and binding in metal-organic frameworks. Inorg. Chem. 47, 7936–7938 (2008) CrossRefGoogle Scholar
  16. Mulfort, K.L., Wilson, T.M., Wasielewski, M.R., Hupp, J.T.: Framework reduction and alkali-metal doping of a triply catenating metal-organic framework enhances and then diminishes H2 uptake. Langmuir 25, 503–508 (2009) CrossRefGoogle Scholar
  17. Murray, L.J., Dinca, M., Long, J.R.: Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009) CrossRefGoogle Scholar
  18. Nouar, F., Eckert, J., Eubank, J.F., Forster, P., Eddaoudi, M.: Zeolite-like metal-organic frameworks (ZMOFs) as hydrogen storage platform: lithium and magnesium ion-exchange and H2-(rho-ZMOF) interaction studies. J. Am. Chem. Soc. 131, 2864–2870 (2009) CrossRefGoogle Scholar
  19. Ohkawara, Y., Kusaka, K., Ohshio, S., Higa, A., Toguchi, M., Saitoh, H.: Hydrogen storage phenomenon in amorphous phase of hydrogenated carbon nitride. Jpn. J. Appl. Phys. 42, 5251–5254 (2003) CrossRefGoogle Scholar
  20. Orimo, S., Majer, G., Fukunaga, T., Zuttel, A., Schlapbach, L., Fujii, H.: Hydrogen in the mechanically prepared nanostructured graphite. Appl. Phys. Lett. 75, 3093–3095 (1999) CrossRefGoogle Scholar
  21. Park, S.H., Liu, H.M., Kleinsorge, M., Grey, C.P., Toby, B.H., Parise, J.B.: [Li-Si-O]-MFI: a new microporous lithosilicate with the MFI topology. Chem. Mater. 16, 2605–2614 (2004) CrossRefGoogle Scholar
  22. Ramirez, A., Lopez, B.L., Sierra, L.: Study of the acidic sites and their modifications in mesoporous silica synthesized in acidic medium under quiescent conditions. J. Phys. Chem. B 107, 9275–9280 (2003) CrossRefGoogle Scholar
  23. Schlapbach, L., Züttel, A.: Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001) CrossRefGoogle Scholar
  24. Shimojima, A., Goto, R., Atsumi, N., Kuroda, K.: Self-assembly of alkyl-substituted cubic siloxane cages into ordered hybrid materials. Chem. Eur. J. 14, 8500–8506 (2008) CrossRefGoogle Scholar
  25. Tang, C.C., Bando, Y., Ding, X.X., Qi, S.R., Golberg, D.: Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. J. Am. Chem. Soc. 124, 14550–14551 (2002) CrossRefGoogle Scholar
  26. Vitillo, J.G., Damin, A., Zecchina, A., Ricchiardi, G.: Theoretical characterization of dihydrogen adducts with alkaline cations. J. Chem. Phys. 122, 114311–114319 (2005) CrossRefGoogle Scholar
  27. Wu, C.H.: Binding-energies of LiH2 and \(\mathrm{LiH}_{2}^{+}\) and the ionization-potential of LiH2. J. Chem. Phys. 71, 783–787 (1979) CrossRefGoogle Scholar
  28. Yang, S., Lin, X., Blake, A.J., Thomas, K.M., Hubberstey, P., Champness, N.R., Schroder, M.: Enhancement of H2 adsorption in Li+ exchanged co-ordination framework materials. Chem. Commun. 46, 6108–6110 (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Masaru Kubo
    • 1
  • Hiroshi Ushiyama
    • 1
  • Atsushi Shimojima
    • 1
  • Tatsuya Okubo
    • 1
  1. 1.Department of Chemical System EngineeringThe University of TokyoTokyoJapan

Personalised recommendations