, Volume 16, Issue 4–5, pp 359–375 | Cite as

Studies of adsorption equilibria and kinetics of o-, m-, p-nitro- and chlorophenols on microporous carbons from aqueous solutions

  • Anna Derylo-MarczewskaEmail author
  • Katarzyna Miroslaw
  • Adam W. Marczewski
  • Dariusz Sternik
Open Access


The studies of adsorption of o-, m-, and p-nitrophenols and chlorophenols from aqueous solutions on microporous activated carbon are presented. The adsorption isotherms were measured at different temperatures: 288, 298, 308 and 318 K. The thermal analysis was applied in order to find the differences in solute interactions with adsorbent surface. The kinetic dependences were measured and the relations between position of adsorbate functional groups and adsorption rate were discussed. The adsorption data are analyzed in terms of the theory of physical adsorption on energetically non-homogeneous solids. The relations between the adsorbate structure and adsorption effectiveness, and the influence of temperature are discussed.


Adsorption from solutions Adsorption equilibria and kinetics Microporous carbon 


  1. Amicarelli, V., Baldassare, G., Liberti, L.: Investigation of low-temperature regeneration of activated carbon. J. Therm. Anal. 18, 155–160 (1980) CrossRefGoogle Scholar
  2. Azizian, S.: Kinetic models of sorption: a theoretical analysis. J. Colloid Interface Sci. 276, 47–52 (2004) CrossRefGoogle Scholar
  3. Brandt, A., Bülow, M., Derylo-Marczewska, A., Goworek, J., Schmeißer, J., Schöps, W., Unger, B.: Novel zeolite composites and consequences for rapid sorption processes. Adsorption 13(3–4), 267–279 (2007) CrossRefGoogle Scholar
  4. Cheung, C.W., Porter, J.F., McKay, G.: Water Res. 35, 605–612 (2001) CrossRefGoogle Scholar
  5. Crank, J.: Mathematics of Diffusion. Clarendon, Oxford (1975) Google Scholar
  6. Deryło-Marczewska, A., Jaroniec, M.: Adsorption of organic solutes from dilute solutions on solids. In: Matijević, E. (ed.) Surface and Colloid Science, vol. 14, pp. 301–379. Plenum, New York (1987) Google Scholar
  7. Deryło-Marczewska, A., Marczewski, A.W.: Influence of pH and adsorbate structure on adsorption of benzene derivatives on activated carbon. In: Do, D.D. (ed.) Adsorption Science and Technology, pp. 174–178. World Scientific, Singapore (2000) Google Scholar
  8. Deryło-Marczewska, A., Marczewski, A.W.: Effect of adsorbate structure on adsorption from solutions. Appl. Surf. Sci. 196, 264–272 (2002) CrossRefGoogle Scholar
  9. Deryło-Marczewska, A., Swiatkowski, A., Buczek, B., Biniak, S.: Adsorption equilibria in the systems: aqueous solutions of organics—oxidized activated carbon samples obtained from different parts of granules. Fuel 85(3), 410–417 (2006) CrossRefGoogle Scholar
  10. Deryło-Marczewska, A., Marczewski, A.W., Winter, Sz., Sternik, D.: Studies of adsorption equilibria and kinetics in the systems: aqueous solution of dyes—mesoporous carbons. Appl. Surf. Sci. 256, 1164–1170 (2010) Google Scholar
  11. Franz, M., Arafat, H.A., Pinto, N.G.: Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon. Carbon 38, 1807–1819 (2000) CrossRefGoogle Scholar
  12. Gregg, S.J., Sing, K.S.W.: Adsorption, Surface Area and Porosity. Academic Press, London (1982) Google Scholar
  13. Haydar, S., Ferro-Garcia, M.A., Rivera-Utrilla, J., Joly, J.P.: Adsorption of p-nitrophenol on activated carbon with different oxidations. Carbon 41, 387–395 (2003) CrossRefGoogle Scholar
  14. Ho, Y.S., McKay, G.: Sorption of dye from aqueous solution by peat. Chem. Eng. J. 70(2), 115–124 (1998a) Google Scholar
  15. Ho, Y.S., McKay, G.: Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf. Environ. Prot. B 76(2), 183–191 (1998b) CrossRefGoogle Scholar
  16. Ho, Y.S.: Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Res. 40, 119–125 (2006a) CrossRefGoogle Scholar
  17. Ho, Y.S.: Review of second-order models for adsorption systems. J. Hazard. Mater. B 136, 681–689 (2006b) CrossRefGoogle Scholar
  18. Horvath, G., Kawazoe, K.: Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Jpn. 16, 470–475 (1983) CrossRefGoogle Scholar
  19. Hsieh, Ch.-T., Teng, H.: Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions. Carbon 38, 863–869 (2000) CrossRefGoogle Scholar
  20. Jaroniec, M., Madey, R.: Physical Adsorption on Heterogeneous Solids. Elsevier, Amsterdam (1988) Google Scholar
  21. Kruk, M., Jaroniec, M., Gadkaree, K.P.: Nitrogen adsorption studies of novel synthetic active carbons. J. Colloid Interface Sci. 192, 250–256 (1997) CrossRefGoogle Scholar
  22. Lagergren, S.: Zur theorie der sogenannten adsorption gelöster stoffe. Kung. Svenska Vettenskapsakad. Handl. 24(4), 1–39 (1898) Google Scholar
  23. László, K.: Adsorption from aqueous phenol and aniline solutions on activated carbons with different surface chemistry. Colloids Surf. A, Physicochem. Eng. Asp. 265, 32–39 (2005) CrossRefGoogle Scholar
  24. Leng, C.-C., Pinto, N.G.: Effects of surface properties of activated carbons on adsorption behaviour of selected aromatics. Carbon 35(9), 1375–1385 (1997) CrossRefGoogle Scholar
  25. Li, L., Quinlivan, P.A., Knappe, D.R.U.: Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 40, 2085–2100 (2002) CrossRefGoogle Scholar
  26. Lillo-Ródenas, M.A., Cazorla-Amorós, D., Linares-Solano, A.: Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon 43, 1758–1767 (2005) CrossRefGoogle Scholar
  27. Liu, Y., Shen, L.: From Langmuir kinetics to first- and second-order rate equations for adsorption. Langmuir 24, 11625–11630 (2008) CrossRefGoogle Scholar
  28. Marczewski, A.W.: Kinetics and equilibrium of adsorption of organic solutes on mesoporous carbons. Appl. Surf. Sci. 253, 5818–5826 (2007) CrossRefGoogle Scholar
  29. Marczewski, A.W.: Kinetics and equilibrium of adsorption of dissociating solutes from aqueous solutions on mesoporous carbons. Pol. J. Chem. 82, 271–281 (2008) Google Scholar
  30. Marczewski, A.W.: Application of mixed order rate equations to adsorption of methylene blue on mesoporous carbons. Appl. Surf. Sci. 256, 5145–5152 (2010) CrossRefGoogle Scholar
  31. Moreno-Castilla, C.: Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42, 83–94 (2004) CrossRefGoogle Scholar
  32. Moreno-Castilla, C., Rivera-Utrilla, J., Lopez-Ramon, M.V., Carrasco-Marin, F.: Adsorption of some substituted phenols on activated carbons from a bituminous coal. Carbon 33(6), 845–851 (1995a) CrossRefGoogle Scholar
  33. Moreno-Castilla, C., Rivera-Utrilla, J., Joly, J.P., Lopez-Ramon, M.V., Ferro-Garcia, M.A., Carrasco-Marin, F.: Thermal regeneration of an activated carbon exhausted with different substituted phenols. Carbon 33(10), 1417–1423 (1995b) CrossRefGoogle Scholar
  34. Okolo, B., Park, C., Keane, M.A.: Interaction of phenol and chlorophenols with activated carbon and synthetic zeolites in aqueous media. J. Colloid Interface Sci. 226, 308–317 (2000) CrossRefGoogle Scholar
  35. Płaziński, W., Rudziński, W., Płazińska, A.: Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv. Colloid Interface Sci. 152, 2–13 (2009) CrossRefGoogle Scholar
  36. Radovic, L.R., Silva, I.F., Ume, J.I., Menéndez, J.A., Leon y Leon, C.A., Scaroni, A.W.: An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electro-donating functional groups by chemically modified activated carbons. Carbon 35, 1339–1348 (1997) CrossRefGoogle Scholar
  37. Radovic, L.R., Moreno-Castilla, C., Rivera-Utrilla, J.: Carbon materials as adsorbents in aqueous solutions. In: Radovic, L.R. (ed.) Chemistry and Physics of Carbon, vol. 27, pp. 227–405. Dekker, New York (2001) Google Scholar
  38. Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16, 2311–2320 (2000) CrossRefGoogle Scholar
  39. Rudziński, W., Płaziński, W.: Theoretical description of the kinetics of solute adsorption at heterogeneous solid/solution interfaces. On the possibility of distinguishing between the diffusional and the surface reaction kinetics models. Appl. Surf. Sci. 253, 5827–5840 (2007) CrossRefGoogle Scholar
  40. Skowroński, J.M.: Thermal investigation of active carbons in presence of air. J. Therm. Anal. 16, 463–469 (1979) CrossRefGoogle Scholar
  41. Tóth, A., Nóvak, C., László, K.: The effect of ionic environment on the TG response of phenol loaded PET-based porous carbons. J. Therm. Anal. Calorim. 97, 273–280 (2009) CrossRefGoogle Scholar
  42. Weber, W.J., Morris, J.C.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. ASCE 89(SA2), 31–59 (1963) Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Anna Derylo-Marczewska
    • 1
    Email author
  • Katarzyna Miroslaw
    • 1
  • Adam W. Marczewski
    • 1
  • Dariusz Sternik
    • 1
  1. 1.Institute of ChemistryM. Curie-Skłodowska UniversityLublinPoland

Personalised recommendations