Adsorption

, Volume 16, Issue 4–5, pp 405–412 | Cite as

Electrical interfacial layer at TiO2/poly(4-styrene sulfonate) aqueous interface

  • Davor Kovačević
  • Darko Mazur
  • Tajana Preočanin
  • Nikola Kallay
Article

Abstract

The interfacial properties of the system titanium(IV) oxide/poly(4-styrenesulfonate) (PSS) over a broad pH region in the presence of different alkali metal chlorides of different concentrations were investigated by means of electrokinetic, adsorption and surface potential measurements. Adsorption and electrokinetic data were obtained with colloid TiO2 particles, while surface potential data were obtained using a single crystal rutile electrode with the 001 plane exposed to the liquid medium. The electrokinetic and surface potentials of TiO2 were measured in the absence and presence of PSS. Since the presence of PSS did not significantly affect surface potentials, it was concluded that negative PSS molecules adsorbed at the surface by forming an outer-sphere surface complex rather than inner-sphere complex. The adsorption decreases significantly with pH, while the electrokinetic potential in the presence of PSS is negative in the whole investigated pH region. Amount of adsorbed PSS molecules is limited by the electrostatic repulsion which suppresses further adsorption, i.e. above critical potential of −50 millivolts. In the acidic region, where the surface is originally positively charged the amount of adsorbed PSS molecules is high since negative PSS molecules should at first compensate original positive charge and in the second step reverse the charge to reach the critical potential. In the basic region the surface charge is already negative so that small amount of adsorbed PSS molecules creates critical potential that prevents further adsorption.

Keywords

Titanium oxide Poly(4-styrene sulfonate) Surface potential Adsorption Zeta potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonekamp, B.C., Lyklema, J.: Conductometric and potentiometric monitoring of polyelectrolyte adsorption on charged surfaces. J. Colloid Interface Sci. 113, 67–75 (1986) CrossRefGoogle Scholar
  2. Bullard, J.W., Cima, M.J.: Orientation dependence of the isoelectric point of TiO2 (rutile) surfaces. Langmuir 22, 10264–10271 (2006) CrossRefGoogle Scholar
  3. Chibowski, S., Krupa, M.: Studies of the influence of polyelectrolyte adsorption on some properties of the electrical double layer of ZrO2-electrolyte solution interface. J. Dispers. Sci. Technol. 21, 761–783 (2000) CrossRefGoogle Scholar
  4. Fleer, G.J., Cohen Stuart, M.A., Scheutjens, J.M.H.M., Cosgrove, T., Vincent, B.: Polymers at Interfaces. Chapman & Hall, London (1993) Google Scholar
  5. Gebhardt, J.E., Fuerstenau, D.W.: Adsorption of polyacrylic acid at oxide/water interfaces. Colloids Surf. 7, 221–231 (1983) CrossRefGoogle Scholar
  6. Guldberg-Pedersen, H., Bergström, L.: Stabilizing ceramic suspensions using anionic polyelectrolytes: Adsorption kinetics and interparticle forces. Acta Mater. 48, 4563–4570 (2000) CrossRefGoogle Scholar
  7. Kallay, N., Dojnović, Z., Čop, A.: Surface potential at hematite-water interface. J. Colloid Interface Sci. 286, 610–614 (2005) CrossRefGoogle Scholar
  8. Kallay, N., Preočanin, T., Ivšić, T.: Determination of surface potential from the electrode potential of a single-crystal electrode. J. Colloid Interface Sci. 309, 21–27 (2007) CrossRefGoogle Scholar
  9. Kallay, N., Preočanin, T., Kovačević, D., Lützenkirchen, J., Chibowski, E.: Electrostatic potentials at solid/liquid interfaces. Croat. Chem. Acta (2010, in press) Google Scholar
  10. Klein Wolterink, J., Koopal, L.K., Cohen Stuart, M.A., van Riemsdijk, W.H.: Surface charge regulation upon polyelectrolyte adsorption, Theoretical calculations and hematite-poly(styrene sulfonate) system. Colloids Surf. A 291, 13–23 (2006) CrossRefGoogle Scholar
  11. Kosmulski, M.: Surface Charging and Points of Zero Charge. Surfactant Science Series, vol. 145. CRC Press, Boca Raton (2009) CrossRefGoogle Scholar
  12. Kovačević, D., Kallay, N., Antol, I., Pohlmeier, A., Lewandovski, H., Narres, H.-D.: The use of electrokinetic potential in the interpretation of adsorption phenomena. Adsorption of salicylic acid on hematite. Colloids Surf. A 140, 261–267 (1998) CrossRefGoogle Scholar
  13. Kovačević, D., Pohlmeier, A., Özbas, G., Narres, H.-D., Schwuger, M.J., Kallay, N.: The adsorption of lead species on goethite. Colloids Surf. A 166, 225–233 (2000) CrossRefGoogle Scholar
  14. Kovačević, D., Preočanin, T., Žalac, S., Čop, A.: Equilibria in the electrical interfacial layer revisited. Croat. Chem. Acta 80, 287–301 (2007) Google Scholar
  15. Lyklema, J.: Points of zero charge in the presence of specific adsorption. J. Colloid Interface Sci. 99, 109–117 (1984) CrossRefGoogle Scholar
  16. Netz, R.R., Joanny, J.-F.: Complexation between a semiflexible polyelectrolyte and an oppositely charged sphere. Macromolecules 32, 9026–9040 (1999) CrossRefGoogle Scholar
  17. Předota, M., Zhang, Z., Fenter, P., Wesolowski, D.J., Cummings, P.T.: Electric double layer at the rutile (110) surface. 2. Adsorption of ions from molecular dynamics and X-ray experiments. J. Phys. Chem. B 108, 12061–12072 (2004) CrossRefGoogle Scholar
  18. Preočanin, T., Kallay, N.: Effect of electrolyte on the surface potential of hematite in aqueous electrolyte solutions. Surf. Eng. 24, 253–258 (2008) CrossRefGoogle Scholar
  19. Preočanin, T., Čop, A., Kallay, N.: Surface potential of hematite in aqueous electrolyte solution: Hysteresis and equilibration at the interface. J. Colloid Interface Sci. 299, 772–776 (2006) CrossRefGoogle Scholar
  20. Preočanin, T., Janusz, W., Kallay, N.: Evaluation of equilibrium parameters of the anatase/aqueous electrolyte solution interface by introducing surface potential data. Colloids Surf. A 297, 30–37 (2007) CrossRefGoogle Scholar
  21. Preočanin, T., Selmani, A., Mazur, D., Kallay, N.: Surface potential at TiO2/aqueous interface in the presence of electrolytes. Appl. Surf. Sci. 256, 5412–5415 (2010) CrossRefGoogle Scholar
  22. Pyman, M.A., Bowden, J.W., Posner, A.M.: The movement of titration curves in the presence of specific adsorption. Aust. J. Soil Res. 17, 191–195 (1979) CrossRefGoogle Scholar
  23. Sonnefeld, J.: On the influence of background electrolyte concentration on the position of the isoelectric point and the point of zero charge. Colloids Surf. A 190, 179–183 (2001) CrossRefGoogle Scholar
  24. Sposito, G.: On points of zero charge. Env. Sci. Technol. 32, 2815–2819 (1998) CrossRefGoogle Scholar
  25. Vermöhlen, K., Lewandowski, H., Narres, H.D., Schwuger, M.J.: Adsorption of polyelectrolytes onto oxides-the influence of ionic strength, molar mass, and calcium ions. Colloids Surf. A 163, 45–53 (2000) CrossRefGoogle Scholar
  26. Vincent, B.: The effect of absorbed polymers on dispersion stability. Adv. Colloid Interface Sci. 4, 193–277 (1974) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Davor Kovačević
    • 1
  • Darko Mazur
    • 1
  • Tajana Preočanin
    • 1
  • Nikola Kallay
    • 1
  1. 1.Laboratory of Physical Chemistry, Department of Chemistry, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations