, Volume 16, Issue 4–5, pp 249–258 | Cite as

Some data and simple models for the silanated glass-electrolyte interface

  • J. LützenkirchenEmail author
  • C. Richter
  • F. Brandenstein


The interface between silanated glass and aqueous KCl electrolyte solutions was studied by zeta-potential and contact angle measurements. Variation of the pH in the zeta-potential measurements yielded a sharp isoelectric point (IEP) at about pH 4, which was independent of the KCl concentration. This particular pH corresponds to zero electrokinetic potential for many hydrophobic surfaces encompassing Teflon, polyethylene and others.

The results are interpreted in terms of hydroxide adsorption at the silanated glass-aqueous interface. A previously developed model for such inert surface—electrolyte interfaces is applied to the experimental data. The model parameters are within the range of those previously obtained for comparable surfaces.

Discrepancies were observed in pH dependent contact angle measurements, which were done using both the plate and the drop method: advancing contact angles were always higher than receding contact angles. Advancing contact angles using the drop method yielded no clear tendency as a function of pH and lower values than those obtained by the plate-method. Overall the contact angle data are presented but deemed difficult to interpret in terms of pH dependence and relation to zeta-potentials. A preliminary description of the contact angle data is attempted via the Lippman-Young equation for the different contact angle data sets based on the model potentials. The model results are discussed.

Zeta-potential measurements were also performed as a function of salt content within a narrow pH range. As would be expected the presence of a 2:1 electrolyte (BaCl2) results in lower absolute values when compared to the KCl case.


Hydrophobicity Contact angle Zeta-potential Hydroxide ion adsorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beattie, J.K., Djerdjev, A.M.: Angew. Chem., Int. Ed. 43, 3568 (2004) CrossRefGoogle Scholar
  2. Beattie, J.K.: Lab Chip 6, 1409 (2006) CrossRefGoogle Scholar
  3. Beattie, J.K.: Chem. Phys. Lett. 481, 17 (2009) CrossRefGoogle Scholar
  4. Bikerman, J.J.: Trans. Faraday. Soc. 34, 1268 (1938) CrossRefGoogle Scholar
  5. Chakrapani, V., Angus, J.C., Anderson, A.B., Wolter, S.D., Stoner, B.R., Sumanasekera, G.U.: Science 318, 1424 (2007) CrossRefGoogle Scholar
  6. Chibowski, E., Waksmundzki, A.: J. Colloid Interface Sci. 64, 380 (1978) CrossRefGoogle Scholar
  7. Dawidowicz, A., Waksmundzki, A., Sokolowski, S.: Sep. Sci. 12, 573 (1977) CrossRefGoogle Scholar
  8. Digilov, R.: Langmuir 16, 6719 (2000) CrossRefGoogle Scholar
  9. Dole, M.: Nature 140, 464 (1937) CrossRefGoogle Scholar
  10. Dole, M.: J. Am. Chem. Soc. 60, 904 (1938) CrossRefGoogle Scholar
  11. Dole, M., Swartout, J.A.: J. Am. Chem. Soc. 62, 3039 (1940) CrossRefGoogle Scholar
  12. Gray-Weale, A.: Chem. Phys. Lett. 481, 22 (2009) CrossRefGoogle Scholar
  13. Hamadi, F., Latrache, H., Zekraoui, M., Ellouali, M., Bengourram, J.: Mater. Sci. Eng. C 29, 1302 (2009) CrossRefGoogle Scholar
  14. Healy, T.W., Fuerstenau, D.W.: J. Colloid Interface Sci. 309, 183 (2007) CrossRefGoogle Scholar
  15. Jones, G., Ray, W.A.: J. Am. Chem. Soc. 57, 957 (1935) CrossRefGoogle Scholar
  16. Jones, G., Ray, W.A.: J. Am. Chem. Soc. 59, 187 (1937) CrossRefGoogle Scholar
  17. Jones, G., Ray, W.A.: J. Am. Chem. Soc. 63, 288 (1941a) CrossRefGoogle Scholar
  18. Jones, G., Ray, W.A.: J. Am. Chem. Soc. 63, 3262 (1941b) CrossRefGoogle Scholar
  19. Jones, G., Ray, W.A.: J. Am. Chem. Soc. 64, 2744 (1942) CrossRefGoogle Scholar
  20. Kaibara, Y., Sugata, K., Tachiki, M., Umezawa, H., Kawarada, H.: Diamond Relat. Mater. 12, 560 (2003) CrossRefGoogle Scholar
  21. Langmuir, I.: Science 88, 430 (1938a) CrossRefGoogle Scholar
  22. Langmuir, I.: J. Chem. Phys. 6, 873 (1938b) CrossRefGoogle Scholar
  23. Long, F.A., Nutting, G.C.: J. Am. Chem. Soc. 64, 2476 (1942) CrossRefGoogle Scholar
  24. Lützenkirchen, J., Preocanin, T., Kallay, N.: Phys. Chem. Chem. Phys. 10, 4946 (2008) CrossRefGoogle Scholar
  25. Manciu, M., Ruckenstein, E.: Adv. Colloid Interface Sci. 105, 63 (2003) CrossRefGoogle Scholar
  26. Marinova, K.G., Alargova, R.G., Denkov, N.D., Velev, O.D., Petsev, D.N., Ivanov, I.B., Borwankar, R.P.: Langmuir 12, 2045 (1996) CrossRefGoogle Scholar
  27. McCafferty, E., Wightman, J.P.: J. Colloid Interface Sci. 194, 344 (1997) CrossRefGoogle Scholar
  28. McCarty, L.S., Whitesides, G.M.: Angew. Chem. Int. Ed. 47, 2188 (2008) CrossRefGoogle Scholar
  29. Onsager, L., Samaras, N.N.T.: J. Phys. Chem. 2, 528 (1934) CrossRefGoogle Scholar
  30. Petersen, P.B., Saykally, R.J.: J. Am. Chem. Soc. 127, 15446 (2005) CrossRefGoogle Scholar
  31. Rayss, J., Surowiec, K., Skubiszewska, J., Waksmundzki, A.: Chromatography 17, 491 (1983) CrossRefGoogle Scholar
  32. Schäfer, K.L., Perez Masia, A., Jüntgen, H.: Z. Elektrochem. 59, 425 (1955) Google Scholar
  33. Stubenrauch, C., von Klitzing, R.: J. Phys.: Condens. Matter 15, R1197 (2003) CrossRefGoogle Scholar
  34. Vácha, R., Zangi, R., Engberts, J.B.F.N., Jungwirth, P.: J. Phys. Chem. C 112, 7689 (2008) CrossRefGoogle Scholar
  35. Wagner, V.C.: Phys. Z. 15, 474 (1924) Google Scholar
  36. Welzel, P.B., Rauwolf, C., Yudin, O., Grundke, K.: J. Colloid Interface Sci. 251, 101 (2002) CrossRefGoogle Scholar
  37. Winter, B., Faubel, M., Vácha, R., Jungwirth, P.: Chem. Phys. Lett. 474, 241 (2009a) CrossRefGoogle Scholar
  38. Winter, B., Faubel, M., Vácha, R., Jungwirth, P.: Chem. Phys. Lett. 481, 19 (2009b) CrossRefGoogle Scholar
  39. Zilch, L.W., Maze, J.T., Smith, J.W., Ewing, G.E., Jarrold, M.F.: J. Phys. Chem. A 112, 13352 (2008) Google Scholar
  40. Zimmermann, R., Dukhin, S., Werner, C.: J. Phys. Chem., B 105, 8544 (2001) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • J. Lützenkirchen
    • 1
    Email author
  • C. Richter
    • 2
    • 3
  • F. Brandenstein
    • 4
  1. 1.Institut for Nuclear Waste Disposal (INE)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Fachbereich PhysikTechnische Universität KaiserslauternKaiserslauternGermany
  3. 3.Institut für Organische ChemieKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  4. 4.Thermo Fisher Scientific, Material-Characterization-Products, Process InstrumentsKarlsruheGermany

Personalised recommendations