, Volume 15, Issue 1, pp 1–12 | Cite as

Behavior of ethylene and ethane within single-walled carbon nanotubes. 1-Adsorption and equilibrium properties

  • Fernando J. A. L. Cruz
  • Erich A. MüllerEmail author


Endohedral adsorption properties of ethylene and ethane onto single-walled carbon nanotubes were investigated using a united atom (2CLJQ) and a fully atomistic (AA-OPLS) force fields, by Grand Canonical Monte Carlo and Molecular Dynamics techniques. Pure fluids were studied at room temperature, T=300 K, and in the pressure ranges 4×10−4<p<47.1 bar (C2H4) and 4×10−4<p<37.9 bar (C2H6). In the low pressure region, isotherms differ quantitatively depending on the intermolecular potential used, but show the same qualitative features. Both potentials predict that ethane is preferentially adsorbed at low pressures, and the opposite behavior was observed at high loadings. Isosteric heats of adsorption and estimates of low pressure Henry’s constants, confirmed that ethane adsorption is the thermodynamically favored process at low pressures. Binary mixtures of C2H4/C2H6 were studied under several (p,T) conditions and the corresponding selectivities towards ethane, S, were evaluated. Small values of S<4 were found in all cases studied. Nanotube geometry plays a minor role on the adsorption properties, which seem to be driven at lower pressures primarily by the larger affinity of the alkane towards the carbon surface and at higher pressures by molecular volume and packing effects. The fact that the selectivity towards ethane is similar to that found earlier on carbon slit pores and larger diameter nanotubes points to the fact that the peculiar 1-D geometry of the nanotubes provides no particular incentive for the adsorption of either species.


Adsorption Molecular simulation Carbon nanotubes Ethylene Ethane Grand canonical Monte Carlo Molecular dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman, D.M., Skoulidas, A.I., Sholl, D.S., Johnson, J.K.: Diffusivities of Ar and Ne in carbon nanotubes. Mol. Sim. 29, 677–684 (2003) CrossRefGoogle Scholar
  2. Agnihotri, S., Mota, J.P.B., Rostam-Abadi, M., Rood, M.J.: Theoretical and experimental investigation of morphology and temperature effects on adsorption of organic vapors in single-walled carbon nanotubes. J. Phys. Chem. B 110, 7640–7647 (2006) CrossRefGoogle Scholar
  3. Al-Baghli, N.A., Loughlin, K.F.: Binary and ternary adsorption of methane, ethane, and ethylene on titanosilicate ETS-10 zeolite. J. Chem. Eng. Data 51, 248–254 (2006) CrossRefGoogle Scholar
  4. Alba-Simionesco, C., Coasne, B., Dosseh, G., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiac, M.: Effects of confinement on freezing and melting. J. Phys., Condens. Matter 18, R15–R68 (2006) CrossRefGoogle Scholar
  5. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1990) Google Scholar
  6. Bekyarova, E., Murata, K., Yudasaka, M., Kasuya, D., Iijima, S., Tanaka, H., Kahoh, H., Kaneko, K.: Single-wall nanostructured carbon for methane storage. J. Phys. Chem. B 20, 4681–4684 (2003) Google Scholar
  7. Bethune, D.S., Kiang, C.H., Vries, M.S.D., Gorman, G., Savoy, R., Vasquez, J., Beyers, R.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993) CrossRefGoogle Scholar
  8. Carrero-Mantilla, J., Llano-Restrepo, M.: Further validation of a set of quadrupolar potential models for ethylene and propylene from the prediction of some binary mixture vapor–liquid equilibria by Gibbs-ensemble molecular simulation. Mol. Sim. 29, 549–554 (2003) CrossRefGoogle Scholar
  9. Chacin, A., Vazquez, J.M., Müller, E.A.: Molecular simulation of the Joule-Thomson inversion curve of carbon monoxide. F. Phase Eq. 165, 147–155 (1999) CrossRefGoogle Scholar
  10. Choi, B.U., Choi, D.-K., Lee, Y.-W., Lee, B.-K., Kim, S.-H.: Adsorption equilibria of methane, ethane, ethylene, nitrogen, and hydrogen onto activated carbon. J. Chem. Eng. Data 48, 603–607 (2003) CrossRefGoogle Scholar
  11. Cracknell, R.F., Nicholson, D.: Grand canonical Monte Carlo study of Lennard-Jones mixtures in slit pores. Part 3. Mixtures of two molecular fluids: ethane and propane. J. Chem. Soc., Faraday Trans. 90, 1497–1493 (1994) CrossRefGoogle Scholar
  12. Curbelo, S., Müller, E.A.: Modelling of ethane/ethylene separation using microporous carbon. Ads. Sci. Tech. 23, 855–865 (2005) CrossRefGoogle Scholar
  13. Da Silva, F.A., Rodrigues, A.E.: Adsorption equilibria and kinetics for propylene and propane over 13X and 4A zeolite pellets. Ind. Eng. Chem. Res. 38, 2051–2057 (1999) CrossRefGoogle Scholar
  14. Darkrim, F.L., Malbrunot, P., Tartaglia, G.P.: Review of hydrogen storage by adsorption in carbon nanotubes. Int. J. Hyd. Energy 27, 193–202 (2002) CrossRefGoogle Scholar
  15. Daubert, T.E., Danner, R.P.: Physical and Thermodynamic Properties of Pure Chemicals, 4th edn. Taylor and Francis, London (1994) Google Scholar
  16. Do, D.D.: Adsorption Analysis and Kinetics. Imperial College Press, London (1998) Google Scholar
  17. Do, D.D., Do, H.D.: Effects of potential models on the adsorption of ethane and ethylene on graphitized thermal carbon black. Study of two-dimensional critical temperature and isosteric heat versus loading. Langmuir 25, 10889–10899 (2004a) CrossRefGoogle Scholar
  18. Do, D.D., Do, H.D.: Adsorption of ethylene on graphitized thermal carbon black and in slit pores: a computer simulation study. Langmuir 20, 7103–7116 (2004b) CrossRefGoogle Scholar
  19. Do, D.D., Do, H.D.: Cooperative and competitive adsorption of ethylene, ethane, nitrogen and argon on graphitized carbon black and in slit pores. Adsorption 11, 35–50 (2005) CrossRefGoogle Scholar
  20. Düren, T., Keil, F.J., Seaton, N.A.: Molecular simulation of adsorption and transport diffusion of model fluids in carbon nanotubes. Mol. Phys. 100, 3741–3751 (2002) CrossRefGoogle Scholar
  21. Fagan, J.A., Simpson, J.R., Bauer, B.J., De Paoli Lacerda, S.H., Becker, M.L., Chun, J., Migler, K.B., Walker, A.R.H., Hobbie, E.K.: Length-dependent optical effects in single-wall carbon nanotubes. J. Am. Chem. Soc. 129, 10607–10612 (2007) CrossRefGoogle Scholar
  22. Fernández, G.A., Vrabec, J., Hasse, H.: Shear viscosity and thermal conductivity of quadrupolar real fluids from molecular simulation. Mol. Sim. 31, 787–793 (2005a) CrossRefGoogle Scholar
  23. Fernández, G.A., Vrabec, J., Hasse, H.: Self-diffusion and binary Maxwell–Stefan diffusion coefficients of quadrupolar real fluids from molecular simulation. Int. J. Therm. 26, 1389–1407 (2005b) CrossRefGoogle Scholar
  24. Frenkel, D., Smit, B.: Understanding Molecular Simulation, 2nd edn. Academic Press, San Diego (2002) Google Scholar
  25. Funk, S., Burghaus, U., White, B., O’Brien, S., Turro, N.J.: Adsorption dynamics of alkanes on single-wall carbon nanotubes: a molecular beam scattering study. J. Phys. Chem. C 111, 8043–8049 (2007) Google Scholar
  26. Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M.: Phase separation in confined systems. Rep. Prog. Phys. 62, 1573–1659 (1999) CrossRefGoogle Scholar
  27. Gray, C.G., Gubbins, K.E.: Theory of Molecular Fluids. Clarendon Press, Oxford (1984) Google Scholar
  28. Guo, J., Bao, X.T., Gui, B., Xiang, S.X., Li, S.R., Huang, X.F., Heslop, M.J.: Co-adsorption equilibrium of ethane and ethylene mixture onto various activated carbons. Paper presented in FOA9 Naxos, Italy, 2007 Google Scholar
  29. Heyden, A., Düren, T., Keil, F.J.: Study of molecular shape and non-ideality effects on mixture adsorption isotherms of small molecules in carbon nanotubes: a grand canonical Monte Carlo simulation study. Chem. Eng. Sci. 57, 2439–2448 (2002) CrossRefGoogle Scholar
  30. Hong, S.Y., Tobias, G., Ballesteros, B., Oualid, F.E., Errey, J.C., Doores, K., Kirkland, A.I., Nellist, P.D., Green, M.L.H., Davis, B.G.: Atomic-scale detection of organic molecules coupled to single-walled carbon nanotubes. J. Am. Chem. Soc. 129, 10966–10967 (2007) CrossRefGoogle Scholar
  31. Hung, F.R., Coasne, B., Santiso, E.E., Gubbins, K.E., Siperstein, F.R., Sliwinska-Bartkowiak, M.: Molecular modeling of freezing of simple fluids confined within carbon nanotubes. J. Chem. Phys. 122, 144706(144701)–144706(144714) (2005) CrossRefGoogle Scholar
  32. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991) CrossRefGoogle Scholar
  33. Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993) CrossRefGoogle Scholar
  34. IUPAC: Reporting physisorption data for gas/solid isotherms. Pure Appl. Chem. 57, 603–619 (1985) CrossRefGoogle Scholar
  35. Jiang, J., Sandler, S.I.: Capillary phase transitions of linear and branched alkanes in carbon nanotubes from molecular simulation. Langmuir 22, 7391–7399 (2006) CrossRefGoogle Scholar
  36. Jiang, J., Wagner, N.J., Sandler, S.I.: A Monte Carlo simulation study of the effect of carbon topology on nitrogen adsorption on graphite, a nanotube bundle, C60 fullerite, C168 schwarzite, and a nanoporous carbon. Phys. Chem. Chem. Phys. 6, 4440–4444 (2004) CrossRefGoogle Scholar
  37. Jiang, J., Sandler, S.I., Schenk, M., Smit, B.: Adsorption and separation of linear and branched alkanes on carbon nanotube bundles from configurational-bias Monte Carlo simulation. Phys. Rev. B 72, 45447 (2005) CrossRefGoogle Scholar
  38. Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996) CrossRefGoogle Scholar
  39. Kaneko, K., Cracknell, R.F., Nicholson, D.: Nitrogen adsorption in slit pores at ambient temperatures: comparison of simulation and experiment. Langmuir 10, 4506–4609 (1994) CrossRefGoogle Scholar
  40. Keil, F.J., Jakobtorweihen, S.: Adsorption and diffusion of alkanes and alkenes in carbon nanotubes. Paper presented in AIChE Annual Meeting Salt Lake City, USA, 2007 Google Scholar
  41. Klochko, A.V., Brodskaya, E.N., Piotrovskaya, E.M.: Computer simulations of dependence of adsorption characteristics of ethane on the size of graphite micropores. Langmuir 15, 545–552 (1999) CrossRefGoogle Scholar
  42. Kondratyuk, P., Wang, Y., Johnson, J.K., Yates, J.T., Jr.: Observation of a one-dimensional adsorption site on carbon nanotubes: adsorption of alkanes of different molecular lengths. J. Phys. Chem. B 109, 20999–21005 (2005) CrossRefGoogle Scholar
  43. Leach, A.R.: Molecular Modeling Principles and Applications. Longman, London (1996) Google Scholar
  44. Liu, Y., Gao, L., Sun, J., Zheng, S., Jiang, L., Wang, Y., Kajiura, H., Li, Y., Noda, K.: A multi-step strategy for cutting and purification of single-walled carbon nanotubes. Carbon 45, 1972–1978 (2007) CrossRefGoogle Scholar
  45. Longhurst, M.J., Quirke, N.: Temperature-driven pumping of fluid through single-walled carbon nanotubes. Nano Lett. 7, 3324–3328 (2007) CrossRefGoogle Scholar
  46. Lu, J.Q., Rider, D.A., Onyegam, E., Wang, H., Winnik, M.A., Manners, I., Cheng, Q., Fu, Q., Liu, J.: Carbon nanotubes with small and tunable diameters from poly(ferrocenylsilane)-block-polysiloxane diblock copolymers. Langmuir 22, 5174–5179 (2006) CrossRefGoogle Scholar
  47. Mao, Z., Sinnott, S.B.: Separation of organic molecular mixtures in carbon nanotubes and bundles: molecular dynamics simulations. J. Phys. Chem. B 105, 6916–6924 (2001) CrossRefGoogle Scholar
  48. McDonald, N.A., Carlson, H.A., Jorgensen, W.L.: Free energies of solvation in chloroform and water from a linear response approach. J. Phys. Org. Chem. 10, 563–576 (1997) CrossRefGoogle Scholar
  49. Meyyappan, M.: Carbon Nanotubes: Science and Applications. CRC Press, London (2005) Google Scholar
  50. Mukherjee, B., Maiti, P.K., Dasgupta, C., Sood, A.K.: Strong correlations and Fickian water diffusion in narrow carbon nanotubes. J. Chem. Phys. 126, 124704–124711 (2007) CrossRefGoogle Scholar
  51. Nicholson, D., Parsonage, N.G.: Computer Simulation and the Statistical Mechanics of Adsorption. Academic Press, New York (1982) Google Scholar
  52. NIST (2008). Chemistry Webbook.
  53. Noble, R.D., Agrawal, R.: Separations research needs for the 21st century. Ind. Eng. Chem. Res. 44, 2887–2892 (2005) CrossRefGoogle Scholar
  54. Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984) CrossRefGoogle Scholar
  55. Ohba, T., Kaneko, K.: Internal surface area evaluation of carbon nanotube with GCMC simulation-assisted N2 adsorption. J. Phys. Chem. B 106, 7171–7176 (2002) CrossRefGoogle Scholar
  56. Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders and Porous Media. Academic Press, New York (1998) Google Scholar
  57. Rowlinson, J.S., Swinton, F.L.: Liquids and Liquid Mixtures. Butterworths, London (1982) Google Scholar
  58. Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998) Google Scholar
  59. Simonyan, V.V., Diep, P., Johnson, J.K.: Molecular simulation of hydrogen adsorption in charged single-walled carbon nanotubes. J. Chem. Phys. 111, 9778–9783 (1999) CrossRefGoogle Scholar
  60. Simonyan, V.V., Johnson, J.K., Kuznetsova, A., Yates, J.T.: Molecular simulation of xenon adsorption on single-walled carbon nanotubes. J. Chem. Phys. 114, 4180–4185 (2001) CrossRefGoogle Scholar
  61. Sinnott, S.B., Andrews, R.: Carbon nanotubes: synthesis, properties, and applications. Crit. Rev. Sol. State Mat. Sci. 26, 145–249 (2001) CrossRefGoogle Scholar
  62. Skoulidas, A.I., Sholl, D.S., Johnson, J.K.: Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes. J. Chem. Phys. 124, 54708(54701)–54708(54707) (2006) CrossRefGoogle Scholar
  63. Smith, W., Todorov, I.T.: A short description of DL_POLY. Mol. Sim. 32, 935–943 (2006) CrossRefGoogle Scholar
  64. Solomons, T.W.: Organic Chemistry, 5th edn. Wiley, New York (1992) Google Scholar
  65. Steele, W.A.: The physical interactions of gases with crystalline solids. Surf. Sci. 36, 317–352 (1973) CrossRefGoogle Scholar
  66. Steele, W.A.: The Interaction of Gases with Solid Surfaces. Pergamon Press, Oxford (1974) Google Scholar
  67. Steele, W.A.: Molecular interactions for physical adsorption. Chem. Rev. 93, 2355–2378 (1993) CrossRefGoogle Scholar
  68. Stoll, J., Vrabec, J., Hasse, H.: Vapor–liquid equilibria of mixtures containing nitrogen, oxygen, carbon dioxide, and ethane. AIChE J. 49, 2187–2198 (2003) CrossRefGoogle Scholar
  69. Striolo, A., Chialvo, A.A., Gubbins, K.E., Cummings, P.T.: Water in carbon nanotubes: adsorption isotherms and thermodynamic properties from molecular simulation. J. Chem. Phys. 122, 234712(234711)–234712(234714) (2005) CrossRefGoogle Scholar
  70. Sweatman, M.B., Quirke, N., Zhu, W., Kapteijn, F.: Analysis of gas adsorption in kureha active carbon based on the slit–pore model and Monte-Carlo simulations. Mol. Sim. 32, 513–522 (2006) CrossRefGoogle Scholar
  71. Taherpour, A.: Structural relationship between degree of unsaturation with polarizability of (5,5) armchair single-wall carbon nanotubes. Nanotubes Carbon Nanostruct. 15, 279–289 (2007) CrossRefGoogle Scholar
  72. van Gunsteren, W.F., Berendsen, H.J.C.: Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry. Angew. Chem. Int. Ed. Engl. 29, 992–1023 (1990) CrossRefGoogle Scholar
  73. Verlet, L.: Computer “Experiments” on classical fluids. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967) CrossRefGoogle Scholar
  74. Vernov, A., Steele, W.A.: The electrostatic field at a graphite surface and its effect on molecule-solid interactions. Langmuir 8, 155–159 (1992) CrossRefGoogle Scholar
  75. Vrabec, J., Stoll, J., Hasse, H.: A set of molecular models for symmetric quadrupolar fluids. J. Phys. Chem. B 105, 12126–12133 (2001) CrossRefGoogle Scholar
  76. Vrabec, J., Kedia, G.K., Hasse, H.: Prediction of Joule–Thomson inversion curves for pure fluids and one mixture by molecular simulation. Cryogenics 45, 253–258 (2005) CrossRefGoogle Scholar
  77. Woodcock, L.V., Singer, K.: Thermodynamics and structural properties of liquid ionic salts obtained by Monte Carlo computation. Trans. Farad. Soc. 67, 12–30 (1971) CrossRefGoogle Scholar
  78. Yang, R.T.: Adsorbents: Fundamentals and Applications. Wiley, New Jersey (2003) CrossRefGoogle Scholar
  79. Yerushalmi-Rozen, R., Szleifer, I.: Utilizing polymers for shaping the interfacial behavior of carbon nanotubes. Soft. Matter. 2, 24–28 (2006) CrossRefGoogle Scholar
  80. Zhao, X., Johnson, J.K.: An effective potential for adsorption of polar molecules on graphite. Mol. Sim. 31, 1–10 (2005) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemical EngineeringImperial College LondonLondonUK

Personalised recommendations