, Volume 14, Issue 2–3, pp 283–287 | Cite as

Potassium hydroxide modified active carbon for adsorptive refrigerators

  • Bronislaw Buczek
  • Eliza Wolak


Active carbon-methanol pair appears to be suitable for adsorptive cooling systems. The porous structure of commercial active carbon was modified by potassium hydroxide treatment at 750 °C. Such treatment develops the specific surface area of carbon, changes nature of its surface and significantly increases the heat of wetting. The applied way for active carbon modification gives possibility of modeling porous structure, character surface and heat effects of carbonaceous materials for adsorptive refrigerators.


Refrigeration Active carbon-methanol pair Heat effects of adsorption 



specific heat of methanol, J/g °C


specific heat of carbon, J/g °C


characteristic energy of adsorption, kJ/mol


heat of wetting, J


specific surface, m2/g


mesopores surface area, m2/g


volume of micropores, cm3/g


volume of methanol used in the measurement, cm3


volume of pores, cm3/g


density of methanol, g/cm3


slit pore width, nm


mass of carbon, g


increase of temperature, °C


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boehm, H.P.: Surface oxides on carbon and their analysis: a critical assessment. Carbon 40, 145 (2002) CrossRefGoogle Scholar
  2. Buczek, B., Klimowska, E., Vogt, E.: Preparation of active carbons for adsorption cooling system. Adsorption 11, 769–773 (2005) CrossRefGoogle Scholar
  3. Dollimore, D., Heal, G.R.: An improved method for the calculation of pore size distribution from adsorption data. J. Appl. Chem. 14, 109–113 (1964) CrossRefGoogle Scholar
  4. Dubinin, M.M.: Adsorption properties and microporous structures of carbonaceous adsorbents. Carbon 25, 593–597 (1987) CrossRefGoogle Scholar
  5. Horvath, G., Kawazoe, K.: Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Jpn. 16, 470–475 (1983) CrossRefGoogle Scholar
  6. Jankowska, H., Swiatkowski, A., Choma, J.: Węgiel Aktywny. WNT, Warszawa (1985) Google Scholar
  7. Kierzek, K., Gryglewicz, G., Machnikowski, J.: Some factors influencing porosity development during KOH activation of various precursors. Karbo 1, 47–50 (2004) Google Scholar
  8. Leite, A.P.F., Grilo, M.B., Andrade, R.R.D., Belo, F.A., Meunier, F.: Experimental evaluation of a multi-tubular adsorber operating with activated carbon-methanol. Adsorption 11, 543–548 (2005) CrossRefGoogle Scholar
  9. Marsh, H., Rodriguez-Reinoso, F.: Activated Carbon. Elsevier, Amsterdam (2006) Google Scholar
  10. Meunier, F.: Adsorptive cooling: a clan technology. Clean Prod. Proc. 3, 8–20 (2001) CrossRefGoogle Scholar
  11. Otowa, T., Nojima, Y., Itoh, M.: Activation Mechanism, Surface Properties and Adsorption Characteristics of KOH Activated High Surface Area. Fundamentals of Adsorption. Kluwer, Boston (1996) Google Scholar
  12. Rouquerol, F., Reuquerol, J., Sing, K.: Adsorption by Powders & Porous Solids. Academic, San Diego (1999), Chap. 12 Google Scholar
  13. Wang, L.W., Wu, J.Y., Wang, R.Z., Xu, Y.X., Wang, S.G.: Experimental study of a solidified activated carbon-methanol adsorption ice maker. Appl. Therm. Eng. 23, 1453–1462 (2003) CrossRefGoogle Scholar
  14. Wolak, E., Buczek, B.: Kierunki badań i praktycznych zastosowań układu węgiel aktywny-metanol. Inz. Ap. Chem. 6, 11–16 (2005), in Polish Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Faculty of Fuels and EnergyAGH-University of Science and TechnologyCracowPoland

Personalised recommendations