, Volume 14, Issue 2–3, pp 289–307 | Cite as

Fundamental studies of gas sorption within mesopores situated amidst an inter-connected, irregular network

  • Sean P. Rigby
  • Peter I. Chigada
  • Emily L. Perkins
  • Matthew J. Watt-Smith
  • John P. Lowe
  • Karen J. Edler


There has been little, or no, direct testing of theories of gas sorption within particular pores situated amidst a highly inter-connected pore network. The concept of thermodynamically independent pores within networks has also been challenged. In this work, a novel integrated nitrogen sorption and mercury porosimetry technique has been used to deconvolve the condensation and evaporation processes within a specific subset of pores contained within a larger, irregular network. The sizes and geometry of these pores were obtained completely independently of gas sorption, using mercury porosimetry and NMR cryoporometry, respectively. Hence, various theories of capillary condensation, such as the Kelvin equation, the Broeckhoff-de Boer method, Saam-Cole theory, and NLDFT could be directly tested, and the potential influence of any collective network phenomena detected. It was found that, even for a shielded pore, the Cohan equation for a cylindrical meniscus gave rise to the best prediction for the relative pressure of capillary condensation, once the effects of surface chemical heterogeneity on multi-layer build-up had been taken into account. The results were also found to be incompatible with the presence of particular collective adsorption effects, such as advanced condensation.


Nitrogen adsorption Capillary condensation Independent pore Network effects NMR cryoporometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R.B.: Modifications of the Brunauer, Emmett and Teller equation. J. Am. Chem. Soc. 68, 686–691 (1946) CrossRefGoogle Scholar
  2. Androutsopoulos, G.P., Salmas, C.E.: A new model for capillary condensation-evaporation hysteresis based on a random corrugated pore structure concept: Prediction of intrinsic pore size distributions. 1. Model formulation. Ind. Eng. Chem. Res. 39, 3747–3763 (2000) CrossRefGoogle Scholar
  3. Avnir, D., Farin, D., Pfeifer, P.: Surface geometric irregularity of particulate materials: The fractal approach. J. Colloid Interface Sci. 103, 112–123 (1985) CrossRefGoogle Scholar
  4. Barrett, E.P., Joyner, L.G., Halenda, P.H.: The determination of pore volume and area distributions in porous substances-I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951) CrossRefGoogle Scholar
  5. Beyea, S.D., Caprihan, A., Glass, S.J., DiGiovanni, A.: Nondestructive characterization of nanopore microstructure: Spatially resolved Brunauer-Emmett-Teller isotherms using nuclear magnetic resonance imaging. J. Appl. Phys. 94, 935–941 (2003) CrossRefGoogle Scholar
  6. Bras, W.: An SAXS/WAXS beamline at the ESRF and future experiments. J. Macromol. Sci. Phys. B37, 557–565 (1998) Google Scholar
  7. Broekhoff, J.C.P., De Boer, J.H.: Studies on pore systems in catalysts: X. Calculations of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores: B. Applications. J. Catal. 9, 15–27 (1967) CrossRefGoogle Scholar
  8. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938) CrossRefGoogle Scholar
  9. Brunauer, S., Skalny, J., Bodor, E.E.: Adsorption on nanoporous solids. J. Colloid Interface Sci. 30, 546–552 (1969) CrossRefGoogle Scholar
  10. Coasne, B., Grosman, A., Dupont-Pavlovsky, N., Ortega, C., Simon, M.: Adsorption in an ordered and non-interconnected mesoporous material: Single crystal porous silicon. Phys. Chem. Chem. Phys. 3, 1196–1200 (2001) CrossRefGoogle Scholar
  11. Cohan, L.H.: Sorption hysteresis and the vapor pressure of concave surfaces. J. Am. Chem. Soc. 60, 433 (1938) CrossRefGoogle Scholar
  12. de Boer, J.H.: The shapes of capillaries. In: Everett, D.H., Stone, F.S. (eds.) The Structure and Properties of Porous Solids, pp. 68–94. Butterworths, London (1958) Google Scholar
  13. Eanes, E.D., Posner, A.S.: Small-angle X-ray scattering measurements of surface areas. In: Flood, E.A. (ed.) The Solid-Gas Interface, pp. 975–994. Dekker, New York (1967) Google Scholar
  14. Esparza, J.M., Ojeda, M.L., Campero, A., Dominguez, A., Kornhauser, I., Rojas, F., Vidales, A.M., Lopez, R.H., Zgrablich, G.: N2 sorption scanning behaviour of SBA-15 porous substrates. Colloids Surf. A Physicochem. Eng. Asp. 241, 35–45 (2004) CrossRefGoogle Scholar
  15. Findenegg, G.H., Gross, S., Michalski, T.: Multi-layer adsorption and pore condensation in controlled-pore glass: A test of the Saam-Cole theory of mesopore filling. In: Motoyuki, S. (ed.) Proc. IVth Int. Conf. on Fundamentals of Adsorption, Kyoto, pp. 161–168. International Adsorption Society (1992) Google Scholar
  16. Gelb, L.D., Gubbins, K.E.: Pore size distributions in porous glasses: A computer simulation study. Langmuir 15, 305–308 (1999) CrossRefGoogle Scholar
  17. Grosse, A.V.: Densities, volumes, expansion coefficients and atomic cell dimensions of metallic mercury for its entire solid and liquid temperature range, i.e. from zero absolute to its critical point (1733 K). J. Inorg. Nucl. Chem. 27, 773–786 (1965) CrossRefGoogle Scholar
  18. Halsey, G.D.: Physical adsorption on non-uniform surfaces. J. Chem. Phys. 16, 931 (1948) CrossRefGoogle Scholar
  19. Hanzawa, Y., Kaneko, K., Yoshizawa, N., Pekala, R.W., Dresselhaus, M.S.: The pore structure determination of carbon aerogels. Adsorption 4, 187–195 (1998) CrossRefGoogle Scholar
  20. Harkins, W.D., Jura, G.: An adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the area occupied by nitrogen molecules on the surfaces of solids. J. Chem. Phys. 11, 431 (1943) CrossRefGoogle Scholar
  21. Honig, J.M.: Analysis of multilayer gas adsorption isotherms using the concept of surface heterogeneity. J. Phys. Chem. 57, 349–351 (1953) CrossRefGoogle Scholar
  22. Jaroniec, M., Solovyov, L.A.: Improvement of the Kruk-Jaroniec-Sayari method for pore size analysis of ordered silicas with cylindrical mesopores. Langmuir 22, 6757–6760 (2006) CrossRefGoogle Scholar
  23. Kikkinides, E.S., Kainourgiakis, M.E., Stubos, A.K.: Origin of hysteresis of gas adsorption in disordered porous media: Lattice gas model versus percolation theory. Langmuir 19, 3338–3344 (2003) CrossRefGoogle Scholar
  24. Kloubek, J.: Hysteresis in porosimetry. Powder Technol. 29, 63–73 (1981) CrossRefGoogle Scholar
  25. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular sieves synthesised by a liquid-crystal template mechanism. Nature 359, 710–712 (1992) CrossRefGoogle Scholar
  26. Kruk, M., Jaroniec, M., Sayari, A.: Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13, 6267–6273 (1997) CrossRefGoogle Scholar
  27. Liabastre, A.A., Orr, C.: An evaluation of pore structure by mercury penetration. J. Colloid Interface Sci. 64, 1–18 (1978) CrossRefGoogle Scholar
  28. Libby, B., Monson, P.A.: Adsorption/desorption hysteresis in inkbottle pores: A density functional theory and Monte-Carlo simulation study. Langmuir 20, 4289–4294 (2004) CrossRefGoogle Scholar
  29. Liley, P.E., Thomson, G.H., Friend, D.G., Daubert, T.E., Buck, E.: Physical and chemical data. In: Perry, R.H., Green, D.W. (eds.) Perry’s Chemical Engineers’ Handbook. McGraw-Hill, Singapore (1998) Google Scholar
  30. Lowell, S., Shields, J.E.: Powder Surface Area and Porosity. Chapman Hall, London (1984) Google Scholar
  31. Lowell, S., Shields, J., Charalambous, G., Manzione, J.: Adsorbate cross-sectional area as a function of the BET C constant. J. Colloid Interface Sci. 86, 191–195 (1982) CrossRefGoogle Scholar
  32. Ma, J., Qi, H., Qong, P.: Experimental study of multilayer adsorption on fractal surfaces in porous media. Phys. Rev. E 59, 2049–2059 (1999) CrossRefGoogle Scholar
  33. Mahnke, M., Mögel, H.J.: Fractal analysis of physical adsorption on material surfaces. Colloids Surf. A 216, 215–228 (2003) CrossRefGoogle Scholar
  34. Matsuhashi, H., Tanaka, T., Arata, K.: Measurement of heat of argon adsorption for the evaluation of relative acid strength of some sulphated metal oxides and H-type zeolites. J. Phys. Chem. B 105, 9669–9671 (2001) CrossRefGoogle Scholar
  35. McMillan, W.G.: Multilayer gas adsorption on composite surfaces. J. Chem. Phys. 15, 390–397 (1947) CrossRefGoogle Scholar
  36. Murray, K.L., Seaton, N.A., Day, M.A.: Use of mercury intrusion data, combined with nitrogen adsorption measurements, as a probe of pore network connectivity. Langmuir 15, 8155–8160 (1999) CrossRefGoogle Scholar
  37. Neimark, A.V., Ravikovitch, P.I.: Capillary condensation in MMS and pore structure characterization. Microporous Mesoporous Mater. 44–45, 697–707 (2001) CrossRefGoogle Scholar
  38. Pellenq, R.J.M., Rousseau, B., Levitz, P.E.: A grand-canonical Monte-Carlo study of argon adsorption/condensation in mesoporous silica glasses. Phys. Chem. Chem. Phys. 3, 1207–1212 (2001) CrossRefGoogle Scholar
  39. Petrov, O., Furó, I.: Curvature-dependent metastability of the solid phase and the freezing-melting hysteresis in pores. Phys. Rev. E 73, 011608 (2006) CrossRefGoogle Scholar
  40. Portsmouth, R.L., Gladden, L.F.: Determination of pore connectivity by mercury porosimetry. Chem. Eng. Sci. 46, 3023–3036 (1991) CrossRefGoogle Scholar
  41. Rigby, S.P., Edler, K.J.: The influence of mercury contact angle, surface tension and retraction mechanism on the interpretation of mercury porosimetry data. J. Colloid Interface Sci. 250, 175–190 (2002) CrossRefGoogle Scholar
  42. Rigby, S.P., Fletcher, R.S.: Experimental evidence for pore blocking as the mechanism for nitrogen sorption hysteresis in a mesoporous material. J. Phys. Chem. B 108, 4690–4695 (2004a) CrossRefGoogle Scholar
  43. Rigby, S.P., Fletcher, R.S.: Interfacing mercury porosimetry with nitrogen sorption. Part. Syst. Charact. 21, 138–148 (2004b) CrossRefGoogle Scholar
  44. Rigby, S.P., Gladden, L.F.: Molecular dynamical studies of the mobility of benzene and water on silica surfaces: Correlation with the influence of surface chemistry and morphology. Stud. Surf. Sci. Catal. 122, 183–190 (1999) Google Scholar
  45. Rigby, S.P., Barwick, D., Fletcher, R.S., Riley, S.N.: Interpreting mercury porosimetry data for catalyst supports using semi-empirical alternatives to the Washburn equation. Appl. Catal. A 238, 303–318 (2003) CrossRefGoogle Scholar
  46. Rigby, S.P., Fletcher, R.S., Riley, S.N.: Characterisation of porous solids using integrated nitrogen sorption and mercury porosimetry. Chem. Engng Sci. 59, 41–51 (2004) CrossRefGoogle Scholar
  47. Rigby, S.P., Evbuomwan, I.O., Watt-Smith, M.J., Edler, K.J., Fletcher, R.S.: Using nano-cast model porous media and integrated gas sorption to improve fundamental understanding and data interpretation in mercury porosimetry. Part. Syst. Charact. 23, 82–93 (2006a) CrossRefGoogle Scholar
  48. Rigby, S.P., Watt-Smith, M.J., Chigada, P., Chudek, J.A., Fletcher, R.S., Wood, J., Bakalis, S., Miri, T.: Studies of the entrapment of non-wetting fluid within nanoporous media using a synergistic combination of MRI and micro-computed X-ray tomography. Chem. Eng. Sci. 61, 7579–7592 (2006b) CrossRefGoogle Scholar
  49. Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. Academic Press, London (1999) Google Scholar
  50. Saam, F.W., Cole, M.W.: Excitations and thermodynamics for liquid-helium films. Phys. Rev. B 11, 1086–1105 (1975) CrossRefGoogle Scholar
  51. Smarsly, B., Goltner, C., Antonietti, M., Ruland, W., Hoinkis, E.: SANS investigation of nitrogen sorption in porous silica. J. Phys. Chem. B 105, 831–840 (2001) CrossRefGoogle Scholar
  52. Schreiber, A., Ketealsen, I., Findenegg, G.H., Hoinkis, E.: Thickness of adsorbed nitrogen films in SBA-15 silica from small angle neutron diffraction. Stud. Surf. Sci. Catal. 160, 17–24 (2006) CrossRefGoogle Scholar
  53. Van Brakel, J., Modry, S., Svata, M.: Mercury porosimetry: State of the art. Powder Technol. 29, 1–12 (1981) CrossRefGoogle Scholar
  54. Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17, 273–283 (1921) CrossRefGoogle Scholar
  55. Watt-Smith, M.J., Edler, K.J., Rigby, S.P.: An experimental study of gas adsorption on fractal surfaces. Langmuir 21, 2281–2292 (2005) CrossRefGoogle Scholar
  56. Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., Stucky, G.D.: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sean P. Rigby
    • 1
  • Peter I. Chigada
    • 1
  • Emily L. Perkins
    • 1
  • Matthew J. Watt-Smith
    • 1
  • John P. Lowe
    • 2
  • Karen J. Edler
    • 2
  1. 1.Department of Chemical EngineeringUniversity of BathClaverton Down, BathUK
  2. 2.Department of ChemistryUniversity of BathClaverton Down, BathUK

Personalised recommendations