, Volume 13, Issue 5–6, pp 523–532 | Cite as

Optimization of layered double hydroxide stability and adsorption capacity for anionic surfactants

  • Natasja Schouten
  • Louis G. J. van der Ham
  • Gert-Jan W. Euverink
  • André B. de Haan


Low cost adsorption technology offers high potential to clean up laundry rinsing water. From an earlier selection of adsorbents (Schouten et al. 2007), layered double hydroxide (LDH) proved to be an interesting material for the removal of anionic surfactant, linear alkyl benzene sulfonate (LAS) which is the main contaminant in rinsing water. The main research question was to identify the effect of process parameters of the LDH synthesis on the stability of the LDH structure and the adsorption capacity of LAS. LDH was synthesized with the co-precipitation method of Reichle (1986); a solution of M2+(NO3)2 and M3+(NO3)3 and a second solution of NaOH and Na2CO3 were pumped in a beaker and mixed. The precipitate that was formed was allowed to age and was subsequently washed, dried and calcined. The process parameters that were investigated are the concentration of the initial solutions, M2+/M3+ ratio and type of cations. The crystallinity can be improved by decreasing the concentration of the initial solutions; this also decreases the leaching of M3+ from the brucite-like structure into the water. The highest adsorption capacity is obtained for Mg2+/Al3+ with a ratio 1 and 2 because of the higher charge density compared to ratio 3. Storing the LDH samples in water resulted in a reduction of adsorption capacity and a decrease in surface area and pore volume. Therefore, LDH is not applicable in a small device for long term use in aqueous surroundings. The adsorption capacity can be maintained during storage in a dry N2 atmosphere.


Layered double hydroxide Stability Anionic surfactant Adsorption capacity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adak, A., Bandyopadhyay, M., Pal, A.: Removal of anionic surfactant from wastewater by alumina: a case study. Colloid Surf. A Physicochem. Eng. Aspects 254(13), 165–171 (2005) CrossRefGoogle Scholar
  2. Anbarasan, R., Lee, W.D., Im, S.S.: Adsorption and intercalation of anionic surfactants onto LDH, a XRD study. Bull. Mater. Sci. 28(2), 145–149 (2005) CrossRefGoogle Scholar
  3. Cavani, F., Trifiro, F., Vaccari, A.: Hydrotalcite-type anionic clays: preparation, properties and applications. Catal. Today 11, 173–301 (1991) CrossRefGoogle Scholar
  4. Frost, R.L., Martens, W.N., Erickson, K.L.: Thermal decomposition of the hydrotalcite: Thermogravimetric analysis and hot stage Raman spectroscopic study. J. Therm. Anal. Calorim. 82(3), 603 (2005) CrossRefGoogle Scholar
  5. Holmberg, K., Jonsson, B., Kronberg, B., Lindman, B.: Surfactants and Polymers in Aqueous Solution, pp. 357–387. Wiley, Chichester (2003) Google Scholar
  6. Kloprogge, J.T., Hickey, L., Frost, R.L.: The effects of synthesis pH and hydrothermal treatment on the formation of zinc aluminum hydrotalcites. J. Solid State Chem. 177(11), 4047–4057 (2004) CrossRefGoogle Scholar
  7. Kopka, H., Beneke, K., Lagaly, G.: Anionic surfactants between double metal hydroxide layers. J. Colloid Interface Sci. 123(2), 427–436 (1988) CrossRefGoogle Scholar
  8. Lazaridis, N.K., Asouhidou, D.D.: Kinetics of sorptive removal of chromium(VI) from aqueous solution by calcined MgAlCO3 hydrotalcite. Water Res. 37, 2875–2882 (2003) CrossRefGoogle Scholar
  9. Lazaridis, N.K., Matis, K.A., Webb, M.: Flotation of metal-loaded clay anion exchangers. Part I: the case of chromates. Chemosphere 47, 373–378 (2001) CrossRefGoogle Scholar
  10. Lazaridis, N.K., Hourzemanoglou, A., Matis, K.A.: Flotation of metal-loaded clay anion exchangers. Part II: the case of arsenates. Chemosphere 47, 319–324 (2002) CrossRefGoogle Scholar
  11. Pavan, P.C., Gomes, G.A., Valim, J.B.: Adsorption of sodium dodecyl sulphate on layered double hydroxides. Microporous Mesoporous Mater. 21, 659–665 (1998) CrossRefGoogle Scholar
  12. Pavan, P.C., Crepaldi, E.L., Gomes, G.D., Valim, J.B.: Adsorption of sodium dodecylsulfate on a hydrotalcite-like compound. Effect of temperature, pH and ionic strength. Colloid Surf. A Physicochem. Eng. Aspects 154, 399–410 (1999) CrossRefGoogle Scholar
  13. Pavan, P.C., Crepaldi, E.L., Valim, J.B.: Sorption of anionic surfactants on LDH. J. Colloid Interface Sci. 229, 346–352 (2000) CrossRefGoogle Scholar
  14. Pavlovic, I., Barriga, C., Ulibarri, M.A., Hermosin, M.C., Cornejo, J.: Adsorption of acidic pesticides 2,4-D, Clopyralid and Picloram on calcined hydrotalcite. Appl. Clay Sci. 30(2), 125–133 (2005) CrossRefGoogle Scholar
  15. Pringadi, P.: Sud Chemie Germany, Ostenrieder Str. 15, 85368 Moosburg, Germany. Personal communication, July 2005 Google Scholar
  16. Ramakrishnan, V.: Unilever Research India, 64 Main Road, Whitefield P.O. Bangalore 560066, India. Personal communication, December 2004 Google Scholar
  17. Reichle, W.T.: Synthesis of anionic clay minerals. Solid State Ionics 22, 135–141 (1986) CrossRefGoogle Scholar
  18. Reis, M.J., Silverio, F., Tronto, J., Valim, J.B.: Effect of pH, temperature, and ionic strength on adsorption of sodium dodecylbenzenesulfonate into Mg-Al-CO3 layered double hydroxides. J. Phys. Chem. Solids 65, 487–492 (2004) CrossRefGoogle Scholar
  19. Schouten, N., van der Ham, A.G.J., Euverink, G.J., de Haan, A.B.: Selection and evaluation of adsorbents for the removal of anionic surfactants from laundry rinsing water. Water Res. 41, 4233–4241 (2007) CrossRefGoogle Scholar
  20. Shin, H.S., Kim, M.J., Nam, S.Y., Moon, H.C.: Phosphorus removal by hydrotalcite-like compounds. Water Sci. Technol. 34(1–2), 161–168 (1996) CrossRefGoogle Scholar
  21. Tao, Q., Zhang, Y., Zhang, X., Yuan, P., He, H.: Synthesis and characterization of layered double hydroxides with a high aspect ratio. J. Solid State Chem. 179(3), 708–715 (2006) CrossRefGoogle Scholar
  22. Trujillano, R., Holgado, M.J., Pigazo, F., Rives, V.: Preparation, physicochemical characterisation and magnetic properties of Cu-Al layered double hydroxides with CO32- and anionic surfactants with different alkyl chains in the interlayer. Phys. B 373(2), 267–273 (2006) CrossRefGoogle Scholar
  23. Ulibarri, M.A., Pavlovic, I., Hermosin, M.C., Cornejo, J.: Hydrotalcite like compounds as potential sorbents of phenols from water. Appl. Clay Sci. 10, 131–145 (1995) CrossRefGoogle Scholar
  24. Xu, Z.P., Stevenson, G.S., Lu, C.Q., Lu, G.Q., Bartlett, P.F., Gray, P.P.: Stable suspension of layered double hydroxide nanoparticles in aqueous solution. J. Am. Chem. Soc. 128(1), 36–37 (2005) CrossRefGoogle Scholar
  25. Zhao, H., Nagy, K.L.: Dodeyl sulfate-hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. J. Colloid Interface Sci. 274, 613–624 (2004) CrossRefGoogle Scholar
  26. Zhu, M.X., Li, Y.P., Xie, M., Xin, H.Z.: Sorption of an anionic dye by uncalcined and calcined LDH. J. Hazard. Mater. 120(1–3), 163–171 (2005) CrossRefGoogle Scholar
  27. Zou, K., Zhang, H., Duan, X.: Studies on the formation of 5-aminosalicylate intercalated Zn-Al layered double hydroxides as a function of Zn/Al molar ratios and synthesis routes. Chem. Eng. Sci. 62(7), 2022–2031 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Natasja Schouten
    • 1
    • 2
  • Louis G. J. van der Ham
    • 2
  • Gert-Jan W. Euverink
    • 1
  • André B. de Haan
    • 3
  1. 1.Wetsus, Centre for sustainable water technologyLeeuwardenThe Netherlands
  2. 2.Faculty of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands
  3. 3.Faculty of Chemical Engineering and ChemistryEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations