Advertisement

Adsorption

, Volume 13, Issue 3–4, pp 247–256 | Cite as

Preparation of MCM-41 silica using the cationic surfactant blend

  • Arnošt ZukalEmail author
  • Helena Šiklová
  • Jiří Čejka
  • Matthias Thommes
Article

Abstract

A series of samples of MCM-41 silica was synthesized using surfactant blends of 1-alkyl-3-methylimidazolium and alkyltrimethylammonium salts or blends of two different 1-alkyl-3-methylimidazolium salts (alkyl denotes octyl or hexadecyl) as structure-directing agents. The precipitation of solid particles from a homogeneous water solution of sodium metasilicate and surfactant blend was achieved by lowering the pH due to the hydrolysis of ethyl acetate added. The molecular sieves were characterized by scanning as well as transmission electron microscopy, X-ray powder diffraction, and nitrogen adsorption using a proper nonlocal density functional theory approach for calculations of the textural parameters. All the prepared silicas were of MCM-41-type; they differ in the integral breadth of the pore size distribution curve and the presence of secondary mesopores. The best quality MCM-41 silica of spherical particle morphology was synthesized by using of optimized blend of hexadecyltrimethylammonium bromide and 1-methyl-3-octylimidazolium chloride. The results obtained showed that spherical particles are composed of domains of perfectly ordered hexagonal porous structure. Some samples prepared by using 1-alkyl-3-methylimidazolium salts featured a narrow pore size distribution. However, they contained a small volume of secondary mesopores.

Keywords

Mesoporous molecular sieves Synthesis and characterization Nitrogen adsorption isotherms 

Abbreviations

SBET

BET surface area, m2/g

SME

cumulative mesopore area, m2/g

VME

cumulative mesopore volume, cm3/g

DME

mesopore mode diameter, nm

ΔDME

integral breadth of the mesopore distribution curve, nm

VSEC

volume of secondary mesopores, cm3/g

VTOT

total pore volume, cm3/g

WME

mesopore size calculated using equation (1), nm

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, C.J., Bradley, A.E., Seddon, K.R.: The synthesis of mesoporous materials using novel ionic liquid templates in water. Aust. J. Chem. 54, 679–691 (2001) CrossRefGoogle Scholar
  2. Antonietti, M., Kuang, D., Smarsly, B., Zhou, Y.: Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew. Chem. Int. Ed. 43, 4988–4992 (2004) CrossRefGoogle Scholar
  3. Chen, F., Huang, L., Li, Q.: Synthesis of MCM-48 using mixed cationic-anionic surfactants as templates. Chem. Mater. 9, 2685–2686 (1997) CrossRefGoogle Scholar
  4. Chen, F., Yan, X., Li, Q.: Effect of hydrothermal conditions on the synthesis of siliceous MCM-48 in mixed cationic-anionic surfactants systems. Stud. Surf. Sci. Catal. 117, 273–280 (1998) Google Scholar
  5. Cheng, Y.-R., Lin, H.-P., Mou, C.-Y.: Control of mesostructure and morphology of surfactant-templated silica in a mixed surfactant system. Phys. Chem. Chem. Phys. 1, 5051–5058 (1999) CrossRefGoogle Scholar
  6. Gordon, C.M.: New developments in catalysis using ionic liquids. Appl. Catal. A Gen. 222, 101–117 (2001) CrossRefGoogle Scholar
  7. Khushalani, D., Kuperman, A., Coombs, N., Ozin, G.A.: Mixed surfactant assemblies in the synthesis of mesoporous silicas. Chem. Mater. 8, 2188–2193 (1996) CrossRefGoogle Scholar
  8. Kim, J.M., Sakamoto, Y., Hwang, Y.K., Kwon, Y.-U., Terasaki, O., Park, S.-E., Stucky, G.D.: Structural design of mesoporous silica by micelle-packing control using blends of amphiphilic block copolymers. J. Phys. Chem. B 106, 2552–2558 (2002) CrossRefGoogle Scholar
  9. Kim, T.-W., Ryoo, R., Kruk, M., Gierszal, K.P., Jaroniec, M., Kamiya, S., Terasaki, O.: Tailoring the pore structure of SBA-15 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time. J. Phys. Chem. B 108, 11480–11489 (2004) CrossRefGoogle Scholar
  10. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992) CrossRefGoogle Scholar
  11. Kruk, M., Jaroniec, M., Sayari, A.: Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13, 6267–6273 (1997) CrossRefGoogle Scholar
  12. Lagrost, C., Carrié, D., Vaultier, M., Hapiot, P.: Reactivities of some electrogenerated organic cation radicals in room-temperature ionic liquids: toward an alternative to volatile organic solvents? J. Phys. Chem. A 745–752 (2003) Google Scholar
  13. Lin, H.-P., Wong, S.-T., Mou, C.-Y., Tang, C.-Y.: Extensive void defects in mesoporous aluminosilicate MCM-41. J. Phys. Chem. B 104, 8967–8975 (2000) CrossRefGoogle Scholar
  14. Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M.: Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, pp. 33–34. Kluwer, Dordrecht (2004) Google Scholar
  15. Miskolczy, Z., Sebök-Nagy, K., Biczók, L., Göktürk, S.: Aggregation and micelle formation of ionic liquids in aqueous solution. Chem. Phys. Lett. 400, 296–300 (2004) CrossRefGoogle Scholar
  16. Monnier, A., Schüth, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R.S., Stucky, G.D., Krishnamurty, M., Petroff, O., Firouzi, A., Janicke, M., Chmelka, B.F.: Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science 261, 1299–1303 (1993) CrossRefGoogle Scholar
  17. Neimark, A.V., Ravikovitch, P.I.: Capillary condensation in MMS and pore structure characterization. Microporous Mesoporous Mater. 44-45, 697–707 (2001) CrossRefGoogle Scholar
  18. Rathouský, J., Zukal, A.: Generalized homogeneous precipitation method for precisely controlled synthesis of mesoporous silica. Stud. Surf. Sci. Catal. 146, 185–188 (2003) Google Scholar
  19. Rathouský, J., Zukalová, M., Kooyman, P.J., Zukal, A.: Synthesis and characterization of colloidal MCM-41. Colloids Surf. A 241, 81–86 (2004) CrossRefGoogle Scholar
  20. Ravikovitch, P.I., Neimark, A.V.: Characterization of nanoporous materials from adsorption and desorption isotherms. Colloids Surf. A 187, 11–21 (2001) CrossRefGoogle Scholar
  21. Roth, W.J., Vartuli, J.C.: Synthesis of mesoporous molecular sieves. Stud. Surf. Sci. Catal. 157, 91–110 (2005) CrossRefGoogle Scholar
  22. Ryoo, R., Ko, C.H., Park, I.-S.: Synthesis of highly ordered CM-41 by micelle-packing control with mixed surfactants. Chem. Commun., 1413–1414 (1999a) Google Scholar
  23. Ryoo, R., Joo, S.H., Kim, J.M.: Energetically favored formation of MCM-48 from cationic-neutral surfactants mixtures. J. Phys. Chem. B 103, 7435–7440 (1999b) CrossRefGoogle Scholar
  24. Scurto, A.M., Aki, S.N.V.K., Brennecke, J.F.: Carbon dioxide induced separation of ionic liquids and water. Chem. Commun., 572–573 (2003) Google Scholar
  25. Trewyn, B.G., Whitman, C.M., Lin, V.S.-Y.: Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano Lett. 4, 2139–2143 (2004) CrossRefGoogle Scholar
  26. Wang, T., Kaper, H., Antonietti, M., Smarsly, B.: Templating behavior of a long-chain ionic liquid in the hydrothermal synthesis of mesoporous silica. Langmuir, in press Google Scholar
  27. Wasserscheid, P., Keim, W.: Ionic liquids—new “solutions” for transition metal catalysis. Angew. Chem. Int. Ed. 39, 3772–3789 (2000) CrossRefGoogle Scholar
  28. Wasserscheid, P., Welton, T. (eds.): Ionic Liquids in Synthesis. Wiley-VCH, Weinheim (2003) Google Scholar
  29. Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999) CrossRefGoogle Scholar
  30. Zhou, Y., Antonietti, M.: Preparation of highly ordered monolithic super-microporous lamellar silica with a room-temperature ionic liquid as template via the nanocasting technique. Adv. Mater. 15, 1452–1544 (2003) CrossRefGoogle Scholar
  31. Zhou, Y., Antonietti, M.: A series of highly ordered, super-microporous, lamellar silicas prepared by nanocasting with ionic liquids. Chem. Mater. 16, 544–550 (2004) CrossRefGoogle Scholar
  32. Zhou, Y., Schattka, J.H., Antonietti, M.: Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol-gel nanocasting technique. Nano Lett. 4, 477–481 (2004) CrossRefGoogle Scholar
  33. Zhu, K., Pozgan, F., D’Souza, L., Richards, R.M.: Ionic liquid templated high surface area mesoporous silica and Ru-SiO2. Microporous Mesoporous Mater. 91, 40–46 (2006) CrossRefGoogle Scholar
  34. Zukal, A., Thommes, M., Čejka, J.: Synthesis of highly ordered MCM-41 silica with spherical particles. Microporous Mesoporous Mater. 104, 52–58 (2007) CrossRefGoogle Scholar
  35. Žilková, N., Zukal, A., Čejka, J.: Synthesis of organized mesoporous alumina templated with ionic liquids. Microporous Mesoporous Mater. 95, 176–179 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Arnošt Zukal
    • 1
    Email author
  • Helena Šiklová
    • 1
  • Jiří Čejka
    • 1
  • Matthias Thommes
    • 2
  1. 1.J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech RepublicPrague 8Czech Republic
  2. 2.Quantachrome InstrumentsBoynton BeachUSA

Personalised recommendations